ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry

Enhanced photocatalytic CO2 reduction performance in Ni-doped perovskite nanocrystals controlled by magnetic fields

Cite this:
CSTR: 32290.14.JUSTC-2024-0078
https://doi.org/10.52396/JUSTC-2024-0078
More Information
  • Author Bio:

    Zhiwen Zhang is currently pursuing her master’s degree in Energy Chemistry at the University of Science and Technology of China. She received her B.S. degree from the University of Science and Technology of China in 2021. Her research mainly focuses on photocatalytic carbon dioxide reduction

    Yu Zhang is currently a specially-appointed associate research fellow at the University of Science and Technology of China. She received her Ph.D. degree from Kyoto University in 2020. Her research mainly focuses on electrocatalysis and photocatalysis

    Yuen Wu is currently a Professor at the University of Science and Technology of China. He received his B.S. and Ph.D. degrees from the Department of Chemistry, Tsinghua University, in 2009 and 2014, respectively. His research interests include the synthesis, assembly, characterization, and application exploration of single atom catalysts

  • Corresponding author: E-mail: zy11260@ustc.edu.cn; E-mail: yuenwu@ustc.edu.cn
  • Received Date: 25 May 2024
  • Accepted Date: 02 June 2024
  • In recent years, magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis, photocatalysis, and thermocatalysis through an important noncontact way. This work demonstrated that doping CsPbCl3 halide perovskite nanocrystals with nickel ions (Ni2+) and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction (CO2RR). Compared with its counterpart, Ni-doped CsPbCl3 exhibits a sixfold increase in CO2RR efficiency under a 500 mT magnetic field. Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism. The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field, leading to reduced electron‒hole recombination and extended carrier lifetimes. This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO2RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.
    Applying an external magnetic field enhances the photocatalytic CO2RR efficiency of Ni-doped CsPbCl3.
    In recent years, magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis, photocatalysis, and thermocatalysis through an important noncontact way. This work demonstrated that doping CsPbCl3 halide perovskite nanocrystals with nickel ions (Ni2+) and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction (CO2RR). Compared with its counterpart, Ni-doped CsPbCl3 exhibits a sixfold increase in CO2RR efficiency under a 500 mT magnetic field. Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism. The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field, leading to reduced electron‒hole recombination and extended carrier lifetimes. This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO2RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.
    • This study provides an effective strategy for enhancing the efficiency of the photocatalytic carbon dioxide reduction reaction (CO2RR) by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.
    • Compared with its counterpart, Ni-doped CsPbCl3 exhibits a sixfold increase in CO2RR efficiency under a 500 mT magnetic field.
    • The significant enhancement of the catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field, leading to reduced electron‒hole recombination and extended carrier lifetimes.

  • loading
  • [1]
    Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43 (23): 7995–8048. doi: 10.1039/C4CS00122B
    [2]
    Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation. Chemical Society Reviews, 2020, 49 (18): 6579–6591. doi: 10.1039/C9CS00920E
    [3]
    Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458: 1158–1162. doi: 10.1038/nature08017
    [4]
    Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3 (1): 43–81. doi: 10.1039/B912904A
    [5]
    Jiang Z, Sun H, Wang T, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy & Environmental Science, 2018, 11 (9): 2382–2389. doi: 10.1039/C8EE01781F
    [6]
    Fang S, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3: 61. doi: 10.1038/s43586-023-00243-w
    [7]
    Gong E, Ali S, Hiragond C B, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy & Environmental Science, 2022, 15 (3): 880–937. doi: 10.1039/D1EE02714J
    [8]
    He Y X, Yin L, Yuan N N, et al. Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review. Chemical Engineering Journal, 2024, 481: 148754. doi: 10.1016/j.cej.2024.148754
    [9]
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131 (17): 6050–6051. doi: 10.1021/ja809598r
    [10]
    Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367 (6482): 1135–1140. doi: 10.1126/science.aaz3691
    [11]
    Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601: 573–578. doi: 10.1038/s41586-021-04216-5
    [12]
    San Martin J, Dang N, Raulerson E, et al. Perovskite photocatalytic CO2 reduction or photoredox organic transformation. Angewandte Chemie International Edition, 2022, 61 (39): e202205572. doi: 10.1002/anie.202205572
    [13]
    Kim T H, Cho K, Lee S H, et al. Spin polarization in Fe-doped CsPbBr3 perovskite nanocrystals for enhancing photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 492: 152095. doi: 10.1016/j.cej.2024.152095
    [14]
    Guo S N, Wang D, Wang J X. ZIF-8@CsPbBr3 nanocrystals formed by conversion of Pb to CsPbBr3 in bimetallic MOFs for enhanced photocatalytic CO2 reduction. Small Methods, 2024, 8 (10): 2301508. doi: 10.1002/smtd.202301508
    [15]
    Jiang Y, Chen H Y, Li J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2020, 30 (50): 2004293. doi: 10.1002/adfm.202004293
    [16]
    Xu Y F, Yang M Z, Chen B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139 (16): 5660–5663. doi: 10.1021/jacs.7b00489
    [17]
    Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018, 28 (1): 1704288. doi: 10.1002/adfm.201704288
    [18]
    Ou M, Tu W, Yin S, et al. , Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57 (41): 13570–13574. doi: 10.1002/anie.201808930
    [19]
    Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem, 2020, 6 (3): 766–780. doi: 10.1016/j.chempr.2020.01.005
    [20]
    Sun Q M, Xu J J, Tao F F, et al. Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angewandte Chemie International Edition, 2022, 61 (20): e202200872. doi: 10.1002/anie.202200872
    [21]
    Wang J C, Wang J, Li N Y, et al. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12 (28): 31477–31485. doi: 10.1021/acsami.0c08152
    [22]
    Wang Q S, Yuan Y C, Li C F, et al. Research progress on photocatalytic CO2 reduction based on perovskite oxides. Small, 2023, 19 (38): 2301892. doi: 10.1002/smll.202301892
    [23]
    Cheng S, Zhao S D, Xing B L, et al. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. Journal of Water Process Engineering, 2022, 47: 102802. doi: 10.1016/j.jwpe.2022.102802
    [24]
    Wang X D, Huang Y H, Liao J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141 (34): 13434–13441. doi: 10.1021/jacs.9b04482
    [25]
    Xu F Y, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11: 4613. doi: 10.1038/s41467-020-18350-7
    [26]
    Wu J K, Li Q F, Xue G B, et al. Preparation of single-crystalline heterojunctions for organic electronics. Advanced Materials, 2017, 29 (14): 1606101. doi: 10.1002/adma.201606101
    [27]
    Wang Y, Li J Y, Zhou Y, et al. Interfacial defect mediated charge carrier trapping and recombination dynamics in TiO2-based nanoheterojunctions. Journal of Alloys and Compounds, 2021, 872: 159592. doi: 10.1016/j.jallcom.2021.159592
    [28]
    Cho J Y, Kim S, Nandi R, et al. Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. Journal of Materials Chemistry A, 2020, 8 (39): 20658–20665. doi: 10.1039/D0TA06937J
    [29]
    Frechette L B, Dellago C, Geissler P L. Consequences of lattice mismatch for phase equilibrium in heterostructured solids. Physical Review Letters, 2019, 123 (13): 135701. doi: 10.1103/PhysRevLett.123.135701
    [30]
    Pan H P, Jiang X X, Wang X K, et al. Effective magnetic field regulation of the radical pair spin states in electrocatalytic CO2 reduction. The Journal of Physical Chemistry Letters, 2020, 11 (1): 48–53. doi: 10.1021/acs.jpclett.9b03146
    [31]
    Pan L, Ai M H, Huang C Y, et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nature Communications, 2020, 11: 418. doi: 10.1038/s41467-020-14333-w
    [32]
    Dhanalakshmi R, Muneeswaran M, Vanga P R, et al. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Applied Physics A, 2015, 122 (1): 13. doi: 10.1007/s00339-015-9527-z
    [33]
    Gao W Q, Lu J B, Zhang S, et al. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Advanced Science, 2019, 6 (18): 1901244. doi: 10.1002/advs.201901244
    [34]
    Li F, Cheng L, Fan J J, et al. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. Journal of Materials Chemistry A, 2021, 9 (42): 23765–23782. doi: 10.1039/D1TA06899G
    [35]
    Kodaimati M S, Gao R, Root S E, et al. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem Catalysis, 2022, 2 (4): 797–815. doi: 10.1016/j.checat.2022.01.023
    [36]
    Zhong S Y, Guo X L, Zhou A, et al. Fundamentals and recent progress in magnetic field assisted CO2 capture and conversion. Small, 2024, 20 (5): 2305533. doi: 10.1002/smll.202305533
    [37]
    He M L, Cheng Y Z, Shen L L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448: 400–406. doi: 10.1016/j.apsusc.2018.04.098
    [38]
    Zhang R, Chen G, Liu H Y, et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn:CsPbCl3 nanocrystals and their application. Optical Materials, 2023, 135: 113308. doi: 10.1016/j.optmat.2022.113308
    [39]
    Yu H Q, Gao X, Huang C C, et al. CsPbCl3 and Mn:CsPbCl3 perovskite nanocubes/nanorods as a prospective cathode material for LIB application. Journal of Materials Science: Materials in Electronics, 2023, 34 (21): 1582. doi: 10.1007/s10854-023-10998-3
    [40]
    Cao Z, Li J, Wang L, et al. Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Materials Research Bulletin, 2020, 121: 110608. doi: 10.1016/j.materresbull.2019.110608
    [41]
    Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO. Inorganic Chemistry, 2022, 61 (45): 18077–18094. doi: 10.1021/acs.inorgchem.2c02549
    [42]
    Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729. doi: 10.1016/j.apsusc.2020.146729
    [43]
    Yu L C, Wei Y C, Lei Y C, et al. Achieving intrinsic dual-band excitonic luminescence from a single three-dimensional perovskite nanoparticle through Ni2+-mediated halide anion exchange. CCS Chemistry, 2024, 6 (2): 415–426. doi: 10.31635/ccschem.023.202302845
    [44]
    Zhang R, Yuan Y X, Zhang J F, et al. Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air. Journal of Materials Science, 2021, 56 (12): 7494–7507. doi: 10.1007/s10853-021-05779-4
    [45]
    Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Letters, 2019, 4 (1): 32–39. doi: 10.1021/acsenergylett.8b01909
    [46]
    Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ion-doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Applied Materials & Interfaces, 2020, 12 (12): 14195–14202. doi: 10.1021/acsami.0c01074
    [47]
    De A, Mondal N, Samanta A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale, 2017, 9 (43): 16722–16727. doi: 10.1039/C7NR06745C
    [48]
    Klein J, Kampermann L, Mockenhaupt B, et al. Limitations of the Tauc plot method. Advanced Functional Materials, 2023, 33 (47): 2304523. doi: 10.1002/adfm.202304523
    [49]
    De Siena M C, Sommer D E, Creutz S E, et al. Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chemistry of Materials, 2019, 31 (18): 7711–7722. doi: 10.1021/acs.chemmater.9b02646
    [50]
    Antonov V N, Bekenov L V, Uba S, et al. Electronic structure and X-ray magnetic circular dichroism in the Ni-Mn-Ga Heusler alloys. Journal of Alloys and Compounds, 2017, 695: 1826–1837. doi: 10.1016/j.jallcom.2016.11.016
    [51]
    Feng S H, Duan H L, Tan H, et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14: 7063. doi: 10.1038/s41467-023-42844-9
    [52]
    Hu J X, Han Y L, Chi X, et al. Tunable spin-polarized states in graphene on a ferrimagnetic oxide insulator. Advanced Materials, 2024, 36 (8): 2305763. doi: 10.1002/adma.202305763
    [53]
    Wang Y, Wang S L, Wu Y B, et al. A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 2021, 851: 156733. doi: 10.1016/j.jallcom.2020.156733
    [54]
    Liu D, Huang Y J, Hu J W, et al. Multiscale catalysis under magnetic fields: methodologies, advances, and trends. ChemCatChem, 2022, 14 (24): e202200889. doi: 10.1002/cctc.202200889
    [55]
    Li X B, Wang W W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catalysis, 2021, 11 (8): 4739–4769. doi: 10.1021/acscatal.0c05354
    [56]
    He J, Wang Y, Shi C J, et al. Enhanced performance of a magnetic photocatalyst regulated using a magnetic field. Separation and Purification Technology, 2022, 284: 120263. doi: 10.1016/j.seppur.2021.120263
  • 加载中

Catalog

    Figure  1.  (a) Schematic representation of the crystal lattice structures of CsPbCl3 and Ni-CsPbCl3. (b) TEM image, (c) HR-TEM image, (d) HAADF image, and (e) EDS elemental scans of Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%.

    Figure  2.  (a) XRD patterns of CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%. (b) XPS spectrum of Ni 2p for Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%. (c) XPS spectra of Pb 4f. (d) PL spectra of CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%.

    Figure  3.  (a) Photocatalytic CO2RR product yields of Ni-CsPbCl3 with various Ni doping ratios under conditions without or with an external magnetic field. (b) UV‒visible absorption spectra of Ni-CsPbCl3 with different Ni doping ratios. (c) Relationships between the photocatalytic CO yield and magnetic field intensity for CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%. (d) Changes in the photocatalytic CO yield over time for CsPbCl3 and Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%.

    Figure  4.  (a) Changes in the photocatalytic yield with switching the magnetic field on or off. (b) Hysteresis loop of Ni-CsPbCl3 with a nickel doping ratio of 8.0 at%. (c) EPR spectra and (d) XRD patterns of Ni-CsPbCl3 with a nickel doping ratio of 8.0 at% before and after photocatalysis.

    Figure  5.  (a) Photogenerated currents for CsPbCl3 and Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (b) EPR spectra of CsPbCl3 and Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (c) XMCD spectra of Ni-CsPbCl3 with a Ni doping ratio of 8.0 at%. (d) Schematic diagram illustrating the mechanism of magnetic field-induced CO2RR performance enhancement.

    [1]
    Goeppert A, Czaun M, Jones J P, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43 (23): 7995–8048. doi: 10.1039/C4CS00122B
    [2]
    Kong T, Jiang Y, Xiong Y. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation. Chemical Society Reviews, 2020, 49 (18): 6579–6591. doi: 10.1039/C9CS00920E
    [3]
    Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458: 1158–1162. doi: 10.1038/nature08017
    [4]
    Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3 (1): 43–81. doi: 10.1039/B912904A
    [5]
    Jiang Z, Sun H, Wang T, et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy & Environmental Science, 2018, 11 (9): 2382–2389. doi: 10.1039/C8EE01781F
    [6]
    Fang S, Rahaman M, Bharti J, et al. Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3: 61. doi: 10.1038/s43586-023-00243-w
    [7]
    Gong E, Ali S, Hiragond C B, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy & Environmental Science, 2022, 15 (3): 880–937. doi: 10.1039/D1EE02714J
    [8]
    He Y X, Yin L, Yuan N N, et al. Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review. Chemical Engineering Journal, 2024, 481: 148754. doi: 10.1016/j.cej.2024.148754
    [9]
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131 (17): 6050–6051. doi: 10.1021/ja809598r
    [10]
    Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367 (6482): 1135–1140. doi: 10.1126/science.aaz3691
    [11]
    Peng J, Kremer F, Walter D, et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601: 573–578. doi: 10.1038/s41586-021-04216-5
    [12]
    San Martin J, Dang N, Raulerson E, et al. Perovskite photocatalytic CO2 reduction or photoredox organic transformation. Angewandte Chemie International Edition, 2022, 61 (39): e202205572. doi: 10.1002/anie.202205572
    [13]
    Kim T H, Cho K, Lee S H, et al. Spin polarization in Fe-doped CsPbBr3 perovskite nanocrystals for enhancing photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 492: 152095. doi: 10.1016/j.cej.2024.152095
    [14]
    Guo S N, Wang D, Wang J X. ZIF-8@CsPbBr3 nanocrystals formed by conversion of Pb to CsPbBr3 in bimetallic MOFs for enhanced photocatalytic CO2 reduction. Small Methods, 2024, 8 (10): 2301508. doi: 10.1002/smtd.202301508
    [15]
    Jiang Y, Chen H Y, Li J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2020, 30 (50): 2004293. doi: 10.1002/adfm.202004293
    [16]
    Xu Y F, Yang M Z, Chen B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139 (16): 5660–5663. doi: 10.1021/jacs.7b00489
    [17]
    Li Z J, Hofman E, Li J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018, 28 (1): 1704288. doi: 10.1002/adfm.201704288
    [18]
    Ou M, Tu W, Yin S, et al. , Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57 (41): 13570–13574. doi: 10.1002/anie.201808930
    [19]
    Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem, 2020, 6 (3): 766–780. doi: 10.1016/j.chempr.2020.01.005
    [20]
    Sun Q M, Xu J J, Tao F F, et al. Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO2 reduction to methane. Angewandte Chemie International Edition, 2022, 61 (20): e202200872. doi: 10.1002/anie.202200872
    [21]
    Wang J C, Wang J, Li N Y, et al. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12 (28): 31477–31485. doi: 10.1021/acsami.0c08152
    [22]
    Wang Q S, Yuan Y C, Li C F, et al. Research progress on photocatalytic CO2 reduction based on perovskite oxides. Small, 2023, 19 (38): 2301892. doi: 10.1002/smll.202301892
    [23]
    Cheng S, Zhao S D, Xing B L, et al. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. Journal of Water Process Engineering, 2022, 47: 102802. doi: 10.1016/j.jwpe.2022.102802
    [24]
    Wang X D, Huang Y H, Liao J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141 (34): 13434–13441. doi: 10.1021/jacs.9b04482
    [25]
    Xu F Y, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11: 4613. doi: 10.1038/s41467-020-18350-7
    [26]
    Wu J K, Li Q F, Xue G B, et al. Preparation of single-crystalline heterojunctions for organic electronics. Advanced Materials, 2017, 29 (14): 1606101. doi: 10.1002/adma.201606101
    [27]
    Wang Y, Li J Y, Zhou Y, et al. Interfacial defect mediated charge carrier trapping and recombination dynamics in TiO2-based nanoheterojunctions. Journal of Alloys and Compounds, 2021, 872: 159592. doi: 10.1016/j.jallcom.2021.159592
    [28]
    Cho J Y, Kim S, Nandi R, et al. Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. Journal of Materials Chemistry A, 2020, 8 (39): 20658–20665. doi: 10.1039/D0TA06937J
    [29]
    Frechette L B, Dellago C, Geissler P L. Consequences of lattice mismatch for phase equilibrium in heterostructured solids. Physical Review Letters, 2019, 123 (13): 135701. doi: 10.1103/PhysRevLett.123.135701
    [30]
    Pan H P, Jiang X X, Wang X K, et al. Effective magnetic field regulation of the radical pair spin states in electrocatalytic CO2 reduction. The Journal of Physical Chemistry Letters, 2020, 11 (1): 48–53. doi: 10.1021/acs.jpclett.9b03146
    [31]
    Pan L, Ai M H, Huang C Y, et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nature Communications, 2020, 11: 418. doi: 10.1038/s41467-020-14333-w
    [32]
    Dhanalakshmi R, Muneeswaran M, Vanga P R, et al. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework. Applied Physics A, 2015, 122 (1): 13. doi: 10.1007/s00339-015-9527-z
    [33]
    Gao W Q, Lu J B, Zhang S, et al. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Advanced Science, 2019, 6 (18): 1901244. doi: 10.1002/advs.201901244
    [34]
    Li F, Cheng L, Fan J J, et al. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. Journal of Materials Chemistry A, 2021, 9 (42): 23765–23782. doi: 10.1039/D1TA06899G
    [35]
    Kodaimati M S, Gao R, Root S E, et al. Magnetic fields enhance mass transport during electrocatalytic reduction of CO2. Chem Catalysis, 2022, 2 (4): 797–815. doi: 10.1016/j.checat.2022.01.023
    [36]
    Zhong S Y, Guo X L, Zhou A, et al. Fundamentals and recent progress in magnetic field assisted CO2 capture and conversion. Small, 2024, 20 (5): 2305533. doi: 10.1002/smll.202305533
    [37]
    He M L, Cheng Y Z, Shen L L, et al. Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448: 400–406. doi: 10.1016/j.apsusc.2018.04.098
    [38]
    Zhang R, Chen G, Liu H Y, et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn:CsPbCl3 nanocrystals and their application. Optical Materials, 2023, 135: 113308. doi: 10.1016/j.optmat.2022.113308
    [39]
    Yu H Q, Gao X, Huang C C, et al. CsPbCl3 and Mn:CsPbCl3 perovskite nanocubes/nanorods as a prospective cathode material for LIB application. Journal of Materials Science: Materials in Electronics, 2023, 34 (21): 1582. doi: 10.1007/s10854-023-10998-3
    [40]
    Cao Z, Li J, Wang L, et al. Enhancing luminescence of intrinsic and Mn doped CsPbCl3 perovskite nanocrystals through Co2+ doping. Materials Research Bulletin, 2020, 121: 110608. doi: 10.1016/j.materresbull.2019.110608
    [41]
    Bagus P S, Nelin C J, Brundle C R, et al. Main and satellite features in the Ni 2p XPS of NiO. Inorganic Chemistry, 2022, 61 (45): 18077–18094. doi: 10.1021/acs.inorgchem.2c02549
    [42]
    Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Applied Surface Science, 2020, 526: 146729. doi: 10.1016/j.apsusc.2020.146729
    [43]
    Yu L C, Wei Y C, Lei Y C, et al. Achieving intrinsic dual-band excitonic luminescence from a single three-dimensional perovskite nanoparticle through Ni2+-mediated halide anion exchange. CCS Chemistry, 2024, 6 (2): 415–426. doi: 10.31635/ccschem.023.202302845
    [44]
    Zhang R, Yuan Y X, Zhang J F, et al. Improving the Mn2+ emission and stability of CsPb(Cl/Br)3 nanocrystals by Ni2+ doping in ambient air. Journal of Materials Science, 2021, 56 (12): 7494–7507. doi: 10.1007/s10853-021-05779-4
    [45]
    Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Letters, 2019, 4 (1): 32–39. doi: 10.1021/acsenergylett.8b01909
    [46]
    Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ion-doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Applied Materials & Interfaces, 2020, 12 (12): 14195–14202. doi: 10.1021/acsami.0c01074
    [47]
    De A, Mondal N, Samanta A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals. Nanoscale, 2017, 9 (43): 16722–16727. doi: 10.1039/C7NR06745C
    [48]
    Klein J, Kampermann L, Mockenhaupt B, et al. Limitations of the Tauc plot method. Advanced Functional Materials, 2023, 33 (47): 2304523. doi: 10.1002/adfm.202304523
    [49]
    De Siena M C, Sommer D E, Creutz S E, et al. Spinodal decomposition during anion exchange in colloidal Mn2+-doped CsPbX3 (X = Cl, Br) perovskite nanocrystals. Chemistry of Materials, 2019, 31 (18): 7711–7722. doi: 10.1021/acs.chemmater.9b02646
    [50]
    Antonov V N, Bekenov L V, Uba S, et al. Electronic structure and X-ray magnetic circular dichroism in the Ni-Mn-Ga Heusler alloys. Journal of Alloys and Compounds, 2017, 695: 1826–1837. doi: 10.1016/j.jallcom.2016.11.016
    [51]
    Feng S H, Duan H L, Tan H, et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nature Communications, 2023, 14: 7063. doi: 10.1038/s41467-023-42844-9
    [52]
    Hu J X, Han Y L, Chi X, et al. Tunable spin-polarized states in graphene on a ferrimagnetic oxide insulator. Advanced Materials, 2024, 36 (8): 2305763. doi: 10.1002/adma.202305763
    [53]
    Wang Y, Wang S L, Wu Y B, et al. A α-Fe2O3/rGO magnetic photocatalyst: Enhanced photocatalytic performance regulated by magnetic field. Journal of Alloys and Compounds, 2021, 851: 156733. doi: 10.1016/j.jallcom.2020.156733
    [54]
    Liu D, Huang Y J, Hu J W, et al. Multiscale catalysis under magnetic fields: methodologies, advances, and trends. ChemCatChem, 2022, 14 (24): e202200889. doi: 10.1002/cctc.202200889
    [55]
    Li X B, Wang W W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catalysis, 2021, 11 (8): 4739–4769. doi: 10.1021/acscatal.0c05354
    [56]
    He J, Wang Y, Shi C J, et al. Enhanced performance of a magnetic photocatalyst regulated using a magnetic field. Separation and Purification Technology, 2022, 284: 120263. doi: 10.1016/j.seppur.2021.120263

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return