[1] |
Tan C, Chen M, Zou C, et al. Potentially practical catalytic systems for olefin-polar monomer coordination copolymerization. CCS Chemistry, 2024, 6: 882–897. doi: 10.31635/ccschem.023.202303322
|
[2] |
Franssen N M G, Reek J N H, de Bruin B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chemical Society Reviews, 2013, 42: 5809–5832. doi: 10.1039/c3cs60032g
|
[3] |
Chung T C. Functionalization of Polyolefins. New York: Academic Press, 2002 .
|
[4] |
Tan C, Chen C L. Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene. Science Bulletin, 2020, 65: 1137–1138. doi: 10.1016/j.scib.2020.04.009
|
[5] |
Soshnikov I E, Chen C L, Bryliakov K P. Ni catalyzed ethylene copolymerization with polar monomers. Science China Chemistry, 2019, 62: 653–654. doi: 10.1007/s11426-019-9458-7
|
[6] |
Xiong S, Shoshani M M, Zhang X, et al. Effcient copolymerization of acrylate and ethylene with neutral P, O-chelated nickel catalysts: mechanistic investigations of monomer insertion and chelate formation. Journal of the American Chemical Society, 2021, 143: 6516–6527. doi: 10.1021/jacs.1c00566
|
[7] |
Hu X Q, Kang X H, Jian Z B. Suppression of chain transfer at high temperature in catalytic olefin polymerization. Angewandte Chemie International Edition, 2022, 61: e202207363. doi: 10.1002/anie.202207363
|
[8] |
Li M Y, Cai Z G, Eisen M S. Rational design of aldimine imidazolidin-2-imine/guanidine nickel catalysts for norbornene (co)polymerizations with enhanced catalytic performance. Journal of Catalysis, 2023, 420: 58–67. doi: 10.1016/j.jcat.2023.02.015
|
[9] |
Tan C, Chen C L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angewandte Chemie International Edition, 2019, 58: 7192–7200. doi: 10.1002/anie.201814634
|
[10] |
Tan C, Zou C, Chen C L. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene–polar monomer copolymerization. Macromolecules, 2022, 55: 1910–1922. doi: 10.1021/acs.macromol.2c00058
|
[11] |
Boaen N K, Hillmyer M A. Post-polymerization functionalization of polyolefins. Chemical Society Reviews, 2005, 34: 267–275. doi: 10.1039/b311405h
|
[12] |
Muhammad Q, Tan C, Chen C L. Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Science Bulletin, 2020, 65: 300–307. doi: 10.1016/j.scib.2019.11.019
|
[13] |
Yuan W B, Li W M, Dai S Y. Preparation of polyethylene thermoplastic elastomers using CS-symmetric nickel catalysts in ethylene polymerization. Polymer, 2023, 285: 126322. doi: 10.1016/j.polymer.2023.126322
|
[14] |
Yan Z P, Chang G R, Zou W P, et al. Synthesis of lightly branched ultrahigh-molecular-weight polyethylene using cationic benzocyclohexyl nickel catalysts. Polymer Chemistry, 2023, 14: 183–190. doi: 10.1039/D2PY01087A
|
[15] |
Johnson L K, Killian C M, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society, 1995, 117: 6414–6415. doi: 10.1021/ja00128a054
|
[16] |
Wang F Z, Chen C L. A continuing legend: the brookhart-type α-diimine nickel and palladium catalysts. Polymer Chemistry, 2019, 10: 2354–2369. doi: 10.1039/C9PY00226J
|
[17] |
Guo L H, Dai S Y, Sui X L, et al. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catalysis, 2016, 6: 428–441. doi: 10.1021/acscatal.5b02426
|
[18] |
Popeney C S, Levins C M, Guan Z. Systematic investigation of ligand substitution effects in cyclophane-based nickel(II) and palladium(II) olefin polymerization catalysts. Organometallics, 2011, 30: 2432–2452. doi: 10.1021/om200193r
|
[19] |
Rhinehart J L, Mitchell N E, Long B K. Enhancing α-diimine catalysts for high-temperature ethylene polymerization. ACS Catalysis, 2014, 4: 2501–2504. doi: 10.1021/cs500694m
|
[20] |
Wu R K, Wu W K, Stieglitz L, et al. Recent advances on α-diimine Ni and Pd complexes for catalyzed ethylene (Co)polymerization: A comprehensive review. Coordination Chemistry Reviews, 2023, 474: 214844. doi: 10.1016/j.ccr.2022.214844
|
[21] |
Dai J J, Dai S Y. Impact of o-aryl halogen effects on ethylene polymerization: steric vs. electronic effects. Dalton Transactions, 2024, 53: 9286–9293. doi: 10.1039/D4DT00850B
|
[22] |
Lu W Q, Ding B H, Zou W P, et al. Direct synthesis of polyethylene thermoplastic elastomers with high molecular weight and excellent elastic recovery via a hybrid steric bulky strategy. European Polymer Journal, 2023, 201: 112577. doi: 10.1016/j.eurpolymj.2023.112577
|
[23] |
Ding B H, Jiang L H, Kang X H, et al. Enhancing suppression of chain transfer via catalyst structural evolution in ethylene (co)polymerization. Chinese Journal of Chemistry, 2023, 41: 1509–1516. doi: 10.1002/cjoc.202200842
|
[24] |
Na Y N, Wang X B, Lian K B, et al. Dinuclear α-diimine NiII and PdII complexes that catalyze ethylene polymerization and copolymerization. ChemCatChem, 2017, 9: 1062–1066. doi: 10.1002/cctc.201601500
|
[25] |
Zhang D F, Nadres E T, Brookhart M, et al. Synthesis of highly branched polyethylene using “sandwich” (8- p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics, 2013, 32: 5136–5143. doi: 10.1021/om400704h
|
[26] |
Rhinehart J L, Brown L A, Long B K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. Journal of the American Chemical Society, 2013, 135: 16316–16319. doi: 10.1021/ja408905t
|
[27] |
Lian K B, Zhu Y, Li W M, et al. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules, 2017, 50: 6074–6080. doi: 10.1021/acs.macromol.7b01087
|
[28] |
Hu X Q, Wang C Q, Jian Z B. Comprehensive studies of the ligand electronic effect on unsymmetrical α-diimine nickel(II) promoted ethylene (co)polymerizations. Polymer Chemistry, 2020, 11: 4005–4012. doi: 10.1039/D0PY00536C
|
[29] |
Wang Y Y, Wang C Q, Hu X Q. et al. Benzosuberyl substituents as a “sandwich-like” function in olefin polymerization catalysis. Chinese Journal of Polymer Science, 2021, 39: 984–993. doi: 10.1007/s10118-021-2562-7
|
[30] |
Peng D, Xu M H, Tan C, et al. Emulsion polymerization strategy for heterogenization of olefin polymerization catalysts. Macromolecules, 2023, 56: 2388–2396. doi: 10.1021/acs.macromol.3c00261
|
[31] |
Zhong L, Li G L, Liang G D, et al. Enhancing thermal stability and living fashion in α-diimine–nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules, 2017, 50: 2675–2682. doi: 10.1021/acs.macromol.7b00121
|
[32] |
Nie N, Yu F, Liu B Y, et al. Homo- and hetero-polymerization of ethylene catalyzed by α-diimine nickel complexes with hydroxyl groups. European Polymer Journal, 2024, 210: 112962. doi: 10.1016/j.eurpolymj.2024.112962
|
[33] |
Zhong L, Du C, Liao G F, et al. Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with α-diimine nickel catalysts. Journal of Catalysis, 2019, 375: 113–123. doi: 10.1016/j.jcat.2019.05.026
|
[34] |
Li A K, Ma H Y, Huang J L. Zirconium complexes bearing bis(phenoxy-imine) ligands with bulky o-bis(aryl)methyl-substituted aniline groups: synthesis, characterization and ethylene polymerization behavior. Applied Organometallic Chemistry, 2013, 27: 341–347. doi: 10.1002/aoc.2984
|
[35] |
Li S K, Xu G Y, Dai S Y. A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species. Polymer Chemistry, 2020, 11: 2692–2699. doi: 10.1039/D0PY00218F
|
[36] |
Liao Y D, Zhang Y X, Cui L, et al. Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species. Organometallics, 2019, 38: 2075–2083. doi: 10.1021/acs.organomet.9b00106
|
[37] |
Lu Z, Xu X W, Luo Y, et al. Unexpected effect of catalyst’s structural symmetry on the branching microstructure of polyethylene in late transition metal polymerization catalysis. ACS Catalysis, 2023, 13: 725–734. doi: 10.1021/acscatal.2c04525
|
[38] |
Nie N, Wang Y Z, Tan C, et al. The synthesis of hyperbranched ethylene oligomers by nickel catalysts with oxazole structure. Journal of Catalysis, 2023, 428: 115164. doi: 10.1016/j.jcat.2023.115164
|
[39] |
Zhong L, Zheng H D, Du C, et al. Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations. Journal of Catalysis, 2020, 384: 208–217. doi: 10.1016/j.jcat.2020.02.022
|
[40] |
Wang X L, Zhang Y P, Wang F, et al. Robust and reactive neutral nickel catalysts for ethylene polymerization and copolymerization with a challenging 1,1-disubstituted difunctional polar monomer. ACS Catalysis, 2021, 11: 2902–2911. doi: 10.1021/acscatal.0c04450
|
[41] |
Gao J X, Yang B P, Chen C L. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. Journal of Catalysis, 2019, 369: 233–238. doi: 10.1016/j.jcat.2018.11.007
|
[42] |
Peng D, Pang W M, Xu G Y, et al. Facile synthesis of sterically demanding SHOP-type nickel catalysts for ethylene polymerization. Applied Organometallic Chemistry, 2019, 33: e5054. doi: 10.1002/aoc.5054
|
[43] |
Peng D, He H L, Pang W M, et al. Synthesis of UHMWPE by neutral phosphine-phenolate based nickel catalysts. Polymer, 2023, 280: 126019. doi: 10.1016/j.polymer.2023.126019
|
[44] |
Wang H, Lu W Q, Zou M M, et al. Direct synthesis of polyethylene thermoplastic elastomers using hybrid bulky acenaphthene-based α-diimine Ni(II) catalysts. Molecules, 2023, 28: 2266. doi: 10.3390/molecules28052266
|
[45] |
Gong Y F, Li S K, Tan C, et al. π–π interaction effect in insertion polymerization with α-Diimine palladium systems. Journal of Catalysis, 2019, 378: 184–191. doi: 10.1016/j.jcat.2019.08.034
|
[46] |
Guo L H, Hu X Y, Lu W Q, et al. Investigations of ligand backbone effects on bulky diarylmethyl-based nickel(II) and palladium(II) catalyzed ethylene polymerization and copolymerization. Journal of Organometallic Chemistry, 2021, 952: 122046. doi: 10.1016/j.jorganchem.2021.122046
|
[47] |
Bi Z X, Zhou J J, Zhu N N, et al. Heterogeneous nickel catalysts for the synthesis of ethylene-based polyolefin elastomers. Macromolecules, 2024, 57: 1080–1086. doi: 10.1021/acs.macromol.3c02378
|
JUSTC-2024-0059 Supporting_Information.docx |
Figure
3.
(a) Molecular structures of Ni2 (CCDC number
Figure 4. (a) Stress‒strain curves of the polymer samples obtained from Ni1 at 50 °C, 80 °C and 100 °C. (b) Stress‒strain curves of the polymer samples obtained from Ni1–Ni3 at 80 °C. (c) Fracture stress and Young’s modulus of the polymer samples generated from Ni1–Ni3 at 80 °C. (d) Strain recovery curve of the polymer sample from Table 1, entry 3.
[1] |
Tan C, Chen M, Zou C, et al. Potentially practical catalytic systems for olefin-polar monomer coordination copolymerization. CCS Chemistry, 2024, 6: 882–897. doi: 10.31635/ccschem.023.202303322
|
[2] |
Franssen N M G, Reek J N H, de Bruin B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chemical Society Reviews, 2013, 42: 5809–5832. doi: 10.1039/c3cs60032g
|
[3] |
Chung T C. Functionalization of Polyolefins. New York: Academic Press, 2002 .
|
[4] |
Tan C, Chen C L. Nickel catalysts for the synthesis of ultra-high molecular weight polyethylene. Science Bulletin, 2020, 65: 1137–1138. doi: 10.1016/j.scib.2020.04.009
|
[5] |
Soshnikov I E, Chen C L, Bryliakov K P. Ni catalyzed ethylene copolymerization with polar monomers. Science China Chemistry, 2019, 62: 653–654. doi: 10.1007/s11426-019-9458-7
|
[6] |
Xiong S, Shoshani M M, Zhang X, et al. Effcient copolymerization of acrylate and ethylene with neutral P, O-chelated nickel catalysts: mechanistic investigations of monomer insertion and chelate formation. Journal of the American Chemical Society, 2021, 143: 6516–6527. doi: 10.1021/jacs.1c00566
|
[7] |
Hu X Q, Kang X H, Jian Z B. Suppression of chain transfer at high temperature in catalytic olefin polymerization. Angewandte Chemie International Edition, 2022, 61: e202207363. doi: 10.1002/anie.202207363
|
[8] |
Li M Y, Cai Z G, Eisen M S. Rational design of aldimine imidazolidin-2-imine/guanidine nickel catalysts for norbornene (co)polymerizations with enhanced catalytic performance. Journal of Catalysis, 2023, 420: 58–67. doi: 10.1016/j.jcat.2023.02.015
|
[9] |
Tan C, Chen C L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angewandte Chemie International Edition, 2019, 58: 7192–7200. doi: 10.1002/anie.201814634
|
[10] |
Tan C, Zou C, Chen C L. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene–polar monomer copolymerization. Macromolecules, 2022, 55: 1910–1922. doi: 10.1021/acs.macromol.2c00058
|
[11] |
Boaen N K, Hillmyer M A. Post-polymerization functionalization of polyolefins. Chemical Society Reviews, 2005, 34: 267–275. doi: 10.1039/b311405h
|
[12] |
Muhammad Q, Tan C, Chen C L. Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization. Science Bulletin, 2020, 65: 300–307. doi: 10.1016/j.scib.2019.11.019
|
[13] |
Yuan W B, Li W M, Dai S Y. Preparation of polyethylene thermoplastic elastomers using CS-symmetric nickel catalysts in ethylene polymerization. Polymer, 2023, 285: 126322. doi: 10.1016/j.polymer.2023.126322
|
[14] |
Yan Z P, Chang G R, Zou W P, et al. Synthesis of lightly branched ultrahigh-molecular-weight polyethylene using cationic benzocyclohexyl nickel catalysts. Polymer Chemistry, 2023, 14: 183–190. doi: 10.1039/D2PY01087A
|
[15] |
Johnson L K, Killian C M, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society, 1995, 117: 6414–6415. doi: 10.1021/ja00128a054
|
[16] |
Wang F Z, Chen C L. A continuing legend: the brookhart-type α-diimine nickel and palladium catalysts. Polymer Chemistry, 2019, 10: 2354–2369. doi: 10.1039/C9PY00226J
|
[17] |
Guo L H, Dai S Y, Sui X L, et al. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catalysis, 2016, 6: 428–441. doi: 10.1021/acscatal.5b02426
|
[18] |
Popeney C S, Levins C M, Guan Z. Systematic investigation of ligand substitution effects in cyclophane-based nickel(II) and palladium(II) olefin polymerization catalysts. Organometallics, 2011, 30: 2432–2452. doi: 10.1021/om200193r
|
[19] |
Rhinehart J L, Mitchell N E, Long B K. Enhancing α-diimine catalysts for high-temperature ethylene polymerization. ACS Catalysis, 2014, 4: 2501–2504. doi: 10.1021/cs500694m
|
[20] |
Wu R K, Wu W K, Stieglitz L, et al. Recent advances on α-diimine Ni and Pd complexes for catalyzed ethylene (Co)polymerization: A comprehensive review. Coordination Chemistry Reviews, 2023, 474: 214844. doi: 10.1016/j.ccr.2022.214844
|
[21] |
Dai J J, Dai S Y. Impact of o-aryl halogen effects on ethylene polymerization: steric vs. electronic effects. Dalton Transactions, 2024, 53: 9286–9293. doi: 10.1039/D4DT00850B
|
[22] |
Lu W Q, Ding B H, Zou W P, et al. Direct synthesis of polyethylene thermoplastic elastomers with high molecular weight and excellent elastic recovery via a hybrid steric bulky strategy. European Polymer Journal, 2023, 201: 112577. doi: 10.1016/j.eurpolymj.2023.112577
|
[23] |
Ding B H, Jiang L H, Kang X H, et al. Enhancing suppression of chain transfer via catalyst structural evolution in ethylene (co)polymerization. Chinese Journal of Chemistry, 2023, 41: 1509–1516. doi: 10.1002/cjoc.202200842
|
[24] |
Na Y N, Wang X B, Lian K B, et al. Dinuclear α-diimine NiII and PdII complexes that catalyze ethylene polymerization and copolymerization. ChemCatChem, 2017, 9: 1062–1066. doi: 10.1002/cctc.201601500
|
[25] |
Zhang D F, Nadres E T, Brookhart M, et al. Synthesis of highly branched polyethylene using “sandwich” (8- p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics, 2013, 32: 5136–5143. doi: 10.1021/om400704h
|
[26] |
Rhinehart J L, Brown L A, Long B K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. Journal of the American Chemical Society, 2013, 135: 16316–16319. doi: 10.1021/ja408905t
|
[27] |
Lian K B, Zhu Y, Li W M, et al. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules, 2017, 50: 6074–6080. doi: 10.1021/acs.macromol.7b01087
|
[28] |
Hu X Q, Wang C Q, Jian Z B. Comprehensive studies of the ligand electronic effect on unsymmetrical α-diimine nickel(II) promoted ethylene (co)polymerizations. Polymer Chemistry, 2020, 11: 4005–4012. doi: 10.1039/D0PY00536C
|
[29] |
Wang Y Y, Wang C Q, Hu X Q. et al. Benzosuberyl substituents as a “sandwich-like” function in olefin polymerization catalysis. Chinese Journal of Polymer Science, 2021, 39: 984–993. doi: 10.1007/s10118-021-2562-7
|
[30] |
Peng D, Xu M H, Tan C, et al. Emulsion polymerization strategy for heterogenization of olefin polymerization catalysts. Macromolecules, 2023, 56: 2388–2396. doi: 10.1021/acs.macromol.3c00261
|
[31] |
Zhong L, Li G L, Liang G D, et al. Enhancing thermal stability and living fashion in α-diimine–nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules, 2017, 50: 2675–2682. doi: 10.1021/acs.macromol.7b00121
|
[32] |
Nie N, Yu F, Liu B Y, et al. Homo- and hetero-polymerization of ethylene catalyzed by α-diimine nickel complexes with hydroxyl groups. European Polymer Journal, 2024, 210: 112962. doi: 10.1016/j.eurpolymj.2024.112962
|
[33] |
Zhong L, Du C, Liao G F, et al. Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with α-diimine nickel catalysts. Journal of Catalysis, 2019, 375: 113–123. doi: 10.1016/j.jcat.2019.05.026
|
[34] |
Li A K, Ma H Y, Huang J L. Zirconium complexes bearing bis(phenoxy-imine) ligands with bulky o-bis(aryl)methyl-substituted aniline groups: synthesis, characterization and ethylene polymerization behavior. Applied Organometallic Chemistry, 2013, 27: 341–347. doi: 10.1002/aoc.2984
|
[35] |
Li S K, Xu G Y, Dai S Y. A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species. Polymer Chemistry, 2020, 11: 2692–2699. doi: 10.1039/D0PY00218F
|
[36] |
Liao Y D, Zhang Y X, Cui L, et al. Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species. Organometallics, 2019, 38: 2075–2083. doi: 10.1021/acs.organomet.9b00106
|
[37] |
Lu Z, Xu X W, Luo Y, et al. Unexpected effect of catalyst’s structural symmetry on the branching microstructure of polyethylene in late transition metal polymerization catalysis. ACS Catalysis, 2023, 13: 725–734. doi: 10.1021/acscatal.2c04525
|
[38] |
Nie N, Wang Y Z, Tan C, et al. The synthesis of hyperbranched ethylene oligomers by nickel catalysts with oxazole structure. Journal of Catalysis, 2023, 428: 115164. doi: 10.1016/j.jcat.2023.115164
|
[39] |
Zhong L, Zheng H D, Du C, et al. Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations. Journal of Catalysis, 2020, 384: 208–217. doi: 10.1016/j.jcat.2020.02.022
|
[40] |
Wang X L, Zhang Y P, Wang F, et al. Robust and reactive neutral nickel catalysts for ethylene polymerization and copolymerization with a challenging 1,1-disubstituted difunctional polar monomer. ACS Catalysis, 2021, 11: 2902–2911. doi: 10.1021/acscatal.0c04450
|
[41] |
Gao J X, Yang B P, Chen C L. Sterics versus electronics: Imine/phosphine-oxide-based nickel catalysts for ethylene polymerization and copolymerization. Journal of Catalysis, 2019, 369: 233–238. doi: 10.1016/j.jcat.2018.11.007
|
[42] |
Peng D, Pang W M, Xu G Y, et al. Facile synthesis of sterically demanding SHOP-type nickel catalysts for ethylene polymerization. Applied Organometallic Chemistry, 2019, 33: e5054. doi: 10.1002/aoc.5054
|
[43] |
Peng D, He H L, Pang W M, et al. Synthesis of UHMWPE by neutral phosphine-phenolate based nickel catalysts. Polymer, 2023, 280: 126019. doi: 10.1016/j.polymer.2023.126019
|
[44] |
Wang H, Lu W Q, Zou M M, et al. Direct synthesis of polyethylene thermoplastic elastomers using hybrid bulky acenaphthene-based α-diimine Ni(II) catalysts. Molecules, 2023, 28: 2266. doi: 10.3390/molecules28052266
|
[45] |
Gong Y F, Li S K, Tan C, et al. π–π interaction effect in insertion polymerization with α-Diimine palladium systems. Journal of Catalysis, 2019, 378: 184–191. doi: 10.1016/j.jcat.2019.08.034
|
[46] |
Guo L H, Hu X Y, Lu W Q, et al. Investigations of ligand backbone effects on bulky diarylmethyl-based nickel(II) and palladium(II) catalyzed ethylene polymerization and copolymerization. Journal of Organometallic Chemistry, 2021, 952: 122046. doi: 10.1016/j.jorganchem.2021.122046
|
[47] |
Bi Z X, Zhou J J, Zhu N N, et al. Heterogeneous nickel catalysts for the synthesis of ethylene-based polyolefin elastomers. Macromolecules, 2024, 57: 1080–1086. doi: 10.1021/acs.macromol.3c02378
|