[1] 
KEEVASH P, SUDAKOV B. On the number of edges not covered by monochromatic copies of axed graphs[J]. J. Combin. Theory Ser. B, 2004,108: 4153.

[2] 
MA J. On edges not in monochromatic copies of axed bipartite graph[J]. J. Combin. Theory Ser. B, 2017, 123: 240248.

[3] 
LIU H, PIKHURKOO, SHARIFZADEH M. Edges not in any monochromatic copy of axed graph[J]. J. Combin. Theory Ser. B, 2019, 135: 1643.

[4] 
SIMONOVITS M. How to solve a Turan type extremal graph problem? (linear decomposition), Contemporary trends in dicrete mathematics[J]. Discrete Math. Theoret. Comput. Sci., 1997, 49: 283305.

[5] 
SIMONOVITS M. Extremal graph problems with symmetrical extremal graphs, additionnal chromatic conditions[J]. Discrete Mathematics, 1974, 7: 349376.

[6] 
ERDS K, STONE A H. On the structure of linear graphs[J]. Bull. Amer. Math. Soc. 1946, 52: 10871091.

[7] 
SIMONOVITS M. A method for solving extremal problems in graph theory, stability problems[C]// Proc. Colloq., Tihany,Theory of Graphs.1968: 279319.

[1] 
KEEVASH P, SUDAKOV B. On the number of edges not covered by monochromatic copies of axed graphs[J]. J. Combin. Theory Ser. B, 2004,108: 4153.

[2] 
MA J. On edges not in monochromatic copies of axed bipartite graph[J]. J. Combin. Theory Ser. B, 2017, 123: 240248.

[3] 
LIU H, PIKHURKOO, SHARIFZADEH M. Edges not in any monochromatic copy of axed graph[J]. J. Combin. Theory Ser. B, 2019, 135: 1643.

[4] 
SIMONOVITS M. How to solve a Turan type extremal graph problem? (linear decomposition), Contemporary trends in dicrete mathematics[J]. Discrete Math. Theoret. Comput. Sci., 1997, 49: 283305.

[5] 
SIMONOVITS M. Extremal graph problems with symmetrical extremal graphs, additionnal chromatic conditions[J]. Discrete Mathematics, 1974, 7: 349376.

[6] 
ERDS K, STONE A H. On the structure of linear graphs[J]. Bull. Amer. Math. Soc. 1946, 52: 10871091.

[7] 
SIMONOVITS M. A method for solving extremal problems in graph theory, stability problems[C]// Proc. Colloq., Tihany,Theory of Graphs.1968: 279319.
