Vol. 50, No. 3 Mar. 2020

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

文章编号:0253-2778(2020)03-0343-06

On the number of edges not covered by monochromatic copies of a matching-critical graph

YUAN Longtu

(School of Mathematical Sciences East China Normal University Shanghai, 200241, China)

Abstract: Given a graph H, let f(n,H) denote the maximum number of edges not contained in any monochromatic copy of H in a 2-edge-coloring of K_n . The Turán number of a graph H, denoted by ex(n,H), is the maximum number of edges in an n-vertex graph which does not contain H as a subgraph. It is easy to see that $f(n,H) \geqslant ex(n,H)$ for any H and n. We show that this lower bound is tight for matching-critical graphs including Pertersen graph and vertex-disjoint union of copies of cliques with same order.

Key words: edge coloring; monochromatic copy; matching critical graph

CLC number: O157. 4 **Document code:** A doi:10.3969/j.issn.0253-2778.2020.03.012

2010 Mathematics Subject Classification: 94B15

Citation: YUAN Longtu. On the number of edges not covered by monochromatic copies of a matching-critical graph[J]. Journal of University of Science and Technology of China, 2020,50(3):343-348.

袁龙图.未被某个匹配临界图的所有单色复制覆盖的边数[J].中国科学技术大学学报,2020,50(3):343-348.

未被某个匹配临界图的所有单色复制覆盖的边数

袁龙图

(华东师范大学数学科学学院,上海 200241)

摘要:给定一个图 H,另 f(n,H)为完全图 K_n 的所有二色边染色中,包含未被单色图 H 的复制覆盖的边数的最大值.图的图兰数,记作 ex(n,H),是指所有的 n 个顶点的图中,不含有 H 作为子图的图的所含有边数的最大值.显然对于任意的 n 和 H,f(n,H)大于等于 ex(n,H). 我们证明了,对于匹配临界图,以上两个数值当 n 是充分大的时候是相等的.

关键词:边染色;单色复制;匹配临界图

0 Introduction

Notations in this paper are standard. For a graph G with subgraph H, we use G-E(H) to denote the spanning subgraph on V(G) with edge set $E(G) \setminus E(H)$ and G-V(H) to denote the induced subgraph of G on vertex set $V(G) \setminus V(H)$.

If G and H are two disjoint subgraphs, we use G+H to denote the graph obtained from $G \cup H$ by adding all edges between every vertex of G and every vertex of H. As usual, denote the balanced complete p-partite graph on n vertices by $T_p(n)$ and its number of edges by $t_p(n)$. Let $H(n,p,k) = K_{k-1} + T_p(n-k+1)$ and h(n,p,k) = e(H(n,p,k))

Received: 2020-02-28; **Revised:** 2020-03-28

Foundation item: Supported by the National Natural Science Foundation of National Natural Science Foundation(11901554).

Biography: YUAN Longtu, male, born in 1984, PhD. Research field: Extremum graph theory. E-mail: vicky576@mail. ustc. edu. cn

k)). The Turán number of a graph H, denoted by ex(n,H), is the maximum number of edges in an n vertex graph which does not contain H as a subgraph. If an n-vertex graph G has ex(n,H) edges and does not contain H as a subgraph, we call G an extremal graph for H.

For a given graph H, let f(n,H) denote the maximum number of edges not contained in any monochromatic copy of H in a 2-edge-coloring of K_n . It is easy to see that $f(n,H) \geqslant \exp(n,H)$ for any H and n. In 2004, Keevash and Sudakov showed in Ref. [1] that this lower bound is tight for a sufficiently large n if H is edgecritical or a cycle of length 4. Here, we call a graph H with chromatic number $\chi(H) = p + 1$ edgecritical if there exists some edge e in H such that $\chi(H-e) = p$.

Theorem 0.1^[1] If H is an edgecritical graph with chromatic number $p+1 \ge 3$, then

$$f(n,H) = \exp(n,H) = t_p(n)$$

for a sufficiently large n.

Moreover, Keevash and Sudakov asked whether $f(n,H) = \operatorname{ex}(n,H)$ for any H and any sufficiently large n, and they obtained a general upper bound that $f(n,H) \leq \operatorname{ex}(n,H) + o(n^2)$. In 2017, Ma^[2] confirmed their problem for an infinite family of bipartite graphs. Later, Liu, Pikhurko and Sharifzadeh^[3] extended his result to a larger family of bipartite graphs and proved a better upper bound for all bipartite graphs.

Theorem 0. 2^[3] If
$$H$$
 is bipartite, then $f(n,H) \leq ex(n,H) + O(1)$

for a sufficiently large n.

Denote by M_k the graph consisting of k independent edges and call it a matching with size k. Call a graph H with chromatic number $\chi(H) = p+1$ k-matching-critical if there exists a matching M_k in H such that $\chi(H-E(M_k))=p$ and $\chi(H-X)=p+1$ for any $X\subseteq V(H)$ with |X|=k-1. There are many interesting k-matching-critical graphs including the Pertersen graph, see Ref. [4]. In 1974, Simonovits [5] determined $\exp(n,H)$ for matching-critical H and characterized its extremal graph.

Theorem 0.3^[5] If H is a k-matching-critical graph with chromatic number $\chi(H) = p + 1 \geqslant 3$, then

$$ex(n, H) = h(n, p, k).$$

The unique extremal graph is H(n, p, k).

In this paper, we will confirm Keevash and Sudakov's problem for matchingcritical H and sufficiently large n. In fact, we will prove the following theorem.

Theorem 0.4 If H is a k-matching-critical graph with chromatic number $\chi(H) = p + 1 \geqslant 3$, then

$$f(n,H) = h(n,p,k)$$

for a sufficiently large n.

1 Preliminaries

By the classical Turán's theorem, if an n vertex graph G does not contain K_p as a subgraph, then $e(G) \leq t_{p-1}(n)$, with the equality holds if and only if $G = T_{p-1}(n)$. Erdős and Stone further proved that if an n-vertex graph G contains a little more than $t_{p-1}(n)$ edges, then G contains a copy of large complete p-partite graph.

Theorem 1. 1^[6] Let $p \geqslant 2$ and $t \geqslant 1$ be given integers. Then for any $\epsilon > 0$, there exists an integer $n_0 = n_0(p, t, \epsilon)$ such that: If a graph G on $n \geqslant n_0$ vertices contains more than $t_{p-1}(n) + \epsilon n^2$ edges, then it contains $T_p(tp)$ as a subgraph.

In 1968, Simonovits^[7] introduced the socalled progressive induction which is similar to the mathematical induction and Euclidean algorithm and combined from them in a certain sense. It will be our main tool in the proof of Theorem 0.4.

Lemma 1. $\mathbf{1}^{[7]}$ Let $\mathscr{U} = \bigcup_{1}^{\infty} \mathscr{U}_{n}$ be a set of given elements, such that \mathscr{U}_{n} are disjoint subsets of \mathscr{U} . Let B be a condition or property defined on \mathscr{U} (i. e. the elements of \mathscr{U}_{n} may satisfy or not satisfy B). Let $\Delta(n)$ be a function defined also on \mathscr{U} such that $\Delta(n)$ is a nonnegative integer and

- (a) if a satisfies B, then $\Delta(a)$ vanishes.
- (b) there is an M_0 such that if $n > M_0$ and $a \in \mathcal{U}_n$ then either a satisfies B or there exist an n' and an a' such that

$$\frac{n}{2} < n' < n$$
 , $a' \in \mathcal{U}_{n'}$ and $\Delta(a) < \Delta(a')$.

Then there exists an n_0 such that if $n > n_0$, from $a \in \mathcal{U}_n$ follows that a satisfies B.

From now on in this paper, we associate every graph we consider with a red/blue-edge-coloring. For any two vertices u and v, call u a red (blue) neighbor of v if the edge uv is colored red (blue). If an edge e is not contained in any monochromatic copy of a given graph H, then we call e NIM-H. If G consists of NIM-H edges, then we call G NIM-G NIM-G Point G and disjoint vertex sets G Point G Point

The following lemma is the same as Lemma 3. 2 in Ref. [1]. We include the proof for completeness.

Lemma 1. 2 Let $p \ge 2$ and $t \ge 1$ be given integers. Let H be a given graph. Then there exists an integer $n_0 = n_0 (p, t, H)$ such that for any $n \ge n_0$: If G is an NIM-H graph on n vertices containing at least $t_p(n)$ edges, then G contains a monochromatic copy of $T_p(tp)$.

Proof Let |V(H)| = h and $t' = 2t(p! \ 4^{h(p-1)})$. Let $n \ge n_0 := n_0(p, t', 1/p(p-1))$ be sufficiently large, where $n_0(p, t', 1/p(p-1))$ is obtained from Theorem 1.1. Since

$$\begin{split} e(G) \geqslant t_p(n) &= \left(\frac{p-1}{p} + o(1)\right) \binom{n}{2} \geqslant \\ &\left(\frac{p-2}{p-1} + \frac{1}{p(p-1)} + o(1)\right) \binom{n}{2} \,, \end{split}$$

G contains $T_p(t'|p)$ as a subgraph by Theorem 1. 1. Let $T_p(t'|p) = (V_1, \dots, V_p) \subseteq G$. Note that every edge between V_i and V_j is NIM-H for $1 \le i \ne j \le p$.

Choose a vertex $v_1 \in V_1$ arbitrarily. Assume without loss of generality that at least half of the edges between v_1 and V_p are red. Denote the red neighborhood of v_1 in V_p by R_p , then every vertex $v \in V_1 \cup \cdots \cup V_{p-1}$ has at most 4^h blue neighbors in

 R_p . Otherwise, let R' denote the blue neighborhood of $v \in V_1 \cup \cdots \cup V_{p-1}$ in R_p . By Ramsey's Theorem, $K \ [R']$ contains a monochromatic copy of K_h . Therefore, either $H \cup \{v\}$ forms a blue copy of K_{h+1} or $H \cup \{v_1\}$ forms a red copy of K_{r+1} , which implies that there exists a monochromatic copy of H using NIM-H edges, a contradiction. Now, choose $V_i^{(1)} \subseteq V_i$ of size t(p-1)! $4^{h(p-2)}$ arbitrarily for every $1 \leqslant i \leqslant p-1$ and let $W_p = R_p \setminus B_p$, where B_p denotes the set of all blue neighbors of every vertex in $V_1^{(1)} \cup \cdots \cup V_{p-1}^{(1)}$. According to the previous analysis, we have

$$\mid W_{p} \mid = \mid R_{p} \mid - \mid B_{p} \mid \geqslant t'/2 - \mid \bigcup_{i=1}^{p-1} V_{i}^{(1)} \mid 4^{h} = t \cdot p \mid 4^{h(p-1)} - t(p-1) \cdot (p-1) \mid 4^{h(p-1)} = t(p-1) \mid 4^{h(p-1)} > t.$$

Note that $(V_1^{(1)},\cdots,V_{p-1}^{(1)},W_p)\subseteq G$ is an NIM-H graph and all edges between $V_1^{(1)}\cup\cdots\cup V_{p-1}^{(1)}$ and W_p are red. So by a similar argument as before, we have that every vertex in $V_i^{(1)}$ has at most 4^h blue neighbors in $V_j^{(1)}$ for any $1\leqslant i\neq j\leqslant p-1$. Next, for $2\leqslant j\leqslant p-1$, we define $(V_1^{(j)}\cup\cdots\cup V_{p-j}^{(j)}\cup W_{p-j+1}\cup\cdots\cup W_p)\subseteq G$ recursively as follows. Choose $V_i^{(j)}\subseteq V_i^{(j-1)}$ of size t(p-j)! • $4^{h(p-j-1)}$ arbitrarily for every $1\leqslant i\leqslant p-j$ and let $W_{p-j+1}=V_{p-j+1}^{(j-1)}\setminus B_{p-j+1}$, where B_{p-j+1} denotes the set of all blue neighbors of every vertex in $V_1^{(j)}\cup\cdots\cup V_{p-j}^{(j)}$. Then we have

$$| W_{p-j+1} | = | V_{p-j+1}^{(j-1)} | - | B_{p-j+1} | =$$

$$t \cdot (p-j+1)! \ 4^{h(p-j)} -$$

$$t(p-j) \cdot (p-j)! \ 4^{h(p-j)} =$$

$$t(p-j)! \ 4^{h(p-j)} \geqslant t \cdot 4^{h} > t$$

and all edges between $V_1^{(j)} \cup \cdots \cup V_{p-j}^{(j)}$ and W_{p-j+1} are red. At last, we get a p-partite graph $(V_1^{(p-1)}, W_2, \cdots, W_p) \subseteq G$ consisting of red edges. Note that $|V_1^{(p-1)}| = t$, so G contains a red copy of $T_p(tp)$. We are done.

Proof of Theorem 0.4

Let H be a k-matchingcritical graph with chromatic number $\chi(H) = p + 1 \geqslant 3$. Since there exist k-1 vertices of H(n, p, k) such that after

deleting them the chromatic number of the obtained graph is p, it follows from the definition of k-matching-critical graphs that $\operatorname{ex}(n,H) \geqslant h(n,p,k)$. Let |V(H)| = h. Let n be a sufficiently large integer. Let G_n be the spanning subgraph of K_n consisting of NIM-H edges with $e(G_n) = f(n,H)$. If $e(G_n) < h(n,p,k)$, then we get a contradiction to the fact $f(n,H) \geqslant \operatorname{ex}(n,H)$. So we may assume that $e(G_n) \geqslant h(n,p,k)$.

Use progressive induction now. Let \mathcal{U}_n be the set of NIM-H graphs G_n with f(n,H) edges. Let property B be $e(G_n) \leq h(n,p,k)$. Let $\Delta(n) = e(G_n) - h(n,p,k)$. Then by our assumption, $\Delta(n)$ is a nonnegative integer. So by Lemma 1.1, we only need to find some n' such that $n/2 \leq n' \leq n$ and $\Delta(n) \leq \Delta(n')$.

As $e(G_n) \geqslant h(n,p,k) \geqslant t_p(n)$, by Lemma 1. 2, G_n contains a monochromatic copy of $T_p(n_1p)$ with n_1 being sufficiently large. Let $R = (R_1, \dots, R_p)$ be a red copy of $T_p(n_1p)$ in G_n , then for any $1 \leqslant i \leqslant p$, the maximum size of a red matching in $K \lceil R_i \rceil$ is at most k-1. Otherwise, let $\{e_1, \dots, e_k\}$ be a red matching in $K \lceil R_1 \rceil$, then these edges and h-2k arbitrary other vertices in R_1 , together with h vertices in every other $R_i(i \neq 1)$ will form a graph containing a red copy of H using NIM-H edges, a contradiction. So we can find a red copy of $T_p(n_2p)$ with $n_2 \geqslant n_1 - 2k$ in R, say $T_0 = (V_1^{(0)}, \dots, V_p^{(0)})$, such that $K \lceil V_i^{(0)} \rceil$ is a blue clique for every $1 \leqslant i \leqslant p$. Therefore, all edges in $K \lceil V_i^{(0)} \rceil$ are not NIM-H for $1 \leqslant i \leqslant p$.

Let $\epsilon \in \mathbb{R}^+$ be sufficiently small. We define a set of vertices $X = \{x_1, \cdots, x_\ell\}$ recursively as follows. If there exists some vertex $x_1 \in V(G) \setminus V(T_0)$ such that x_1 has at least $\epsilon^2 n_2$ red neighbors in each part of T_0 , then there exists a copy of $T_p(\epsilon^2 n_2 p) \subseteq T_0$, denoted by T_1 , such that x_1 is joint to all vertices of T_1 by red edges; For $i \geqslant 2$, if there exists some vertex $x_i \in V(G_n) \setminus V(T_{i-1})$ such that x_i has at least $\epsilon^{2i} n_2$ red neighbors in each part of T_{i-1} , then there exists a copy of $T_p(\epsilon^{2i} n_2 p) \subseteq T_{i-1}$, denoted by T_i , such that x_i is joint to all vertices of T_i by red edges. Since $T_i \subseteq$

 $T_{i-1} \cdots \subseteq T_1$, every vertex of $\{x_1, \cdots, x_i\}$ is joint to every vertex of T_i by a red edge. We claim that this process stops within k-1 steps. Otherwise, there exists a copy of T_p ($\epsilon^{2k} n_2 p$), denoted by $T_k = (V_1^{(k)}, \dots, V_p^{(k)}),$ such that every vertex of $\{x_1, \dots, x_k\}$ is joint to every vertex of T_k by a red edge. Then $\{x_1, \dots, x_k\}$ and h-k arbitrary other vertices in $V_1^{(k)}$, together with h vertices in every other $V_i^{(k)}$ ($i \neq 1$) will form a graph containing a red copy of H using NIM-H edges, a contradiction. Therefore, $0 \le l \le k-1$. Let $T_l = (V_1^{(l)}, \dots, V_p^{(l)})$ and $W = V(G_n) \setminus (V(T_i) \cup X)$, then for any vertex $w \in W$, there exists some $1 \le i \le p$ such that w has less than $\epsilon^{2l+2}n_2$ red neighbors in $V_i^{(l)}$. So we can get a partition of $W = C'_1 \cup \cdots \cup C'_p \cup D$ as follows. For any $1 \le i \le p$, if $w \in W$ has less than $e^{2i+2}n_2$ red neighbors in $V_i^{(l)}$ and at least $(1-\epsilon)\epsilon^{2l}n_2$ red neighbors in every $V_i^{(i)}$ with $j \neq i$, let $w \in C_i'$; Otherwise, i. e., there exist two indices $1 \le i \ne j \le p$ such that $w \in W$ has less than $e^{2i+2}n_2$ red neighbors in $V_i^{(\ell)}$ and less than $(1-\epsilon)\epsilon^{2\ell}n_2$ red neighbors in $V_i^{(l)}$, let $w \in D$.

Claim 2. 1 For any $1 \le i \le p$, there exists $V_i' \subseteq V_i^{(i)}$ with $|V_i'| > (1 - \epsilon^2 k) |V_i^{(i)}|$ such that all edges between V_i' and C_i' are blue.

Assume i = 1 without loss of generality. Choose a maximal matching $\{x_1y_1, \dots, y_n\}$ $x_t y_t$ } between $V_1^{(t)}$ and C_1' , where $x_s \in V_1^{(t)}$ and $y_s \in C'_1$ for $1 \le s \le t$. Note that $t \le k - 1$. Otherwise, by the definition of C'_1 , y_s has at least $(1-\epsilon)\epsilon^{2l}n_2$ red neighbors in $V_i^{(l)}$ for any $1 \leq s \leq k$ and $j \ge 2$. So y_1, \dots, y_k have at least $(1 - k\epsilon) \epsilon^{2l} n_2$ common red neighbors in $V_i^{(i)}$ for any $j \ge 2$. Since n_2 is sufficiently large, we can choose ϵ sufficiently small such that $(1-k\epsilon)\epsilon^{2l}n_2 > h$. For $j \ge 2$, let $N_i \subseteq V_i^{(l)}$ be a subset of the common red neighborhood of y_1, \dots, y_k with $|N_j| = h$. Then $\{x_1y_1, \dots, x_ky_k\}$ and h-2k arbitrary other vertices in $V_1^{(l)}$, together with N_2, \dots, N_p will form a graph containing a red copy of H using NIM-H edges, a contradiction. Let N be the set of all red neighbors of y_1, \dots, y_t in $V_1^{(t)}$. By the definition of C_1' , we have $|N| < t \cdot \epsilon^{2l+2} n_2 < k \cdot \epsilon^{2l+2} n_2 =$

 $k\epsilon^2 |V_1^{\scriptscriptstyle (\ell)}|$. By the maximality of $\{x_1y_1,\cdots,x_ty_t\}$, all edges between $V_1^{\scriptscriptstyle (\ell)}\setminus N$ and $C_1'\setminus \{x_1,\cdots,x_t\}$ are blue. Moreover, by the definition of N, all edges between $V_1^{\scriptscriptstyle (\ell)}\setminus N$ and C_1' are blue. Note that $|V_1^{\scriptscriptstyle (\ell)}\setminus N|\!>\! (1\!-\!k\epsilon^2)|V_1^{\scriptscriptstyle (\ell)}|$, we are done.

Since $V_i' \subseteq V_i^{(l)} \subseteq V_i^{(l)}$, $K \lceil V_i' \rceil$ is a blue clique for any $1 \le i \le p$. So by Claim 2.1, for every $1 \le i \le p$. $i {\leqslant} p$, we can move $k {\epsilon}^2 \, | \, V_i^{\scriptscriptstyle (\ell)} \, | \,$ vertices from $V_i^{\scriptscriptstyle (\ell)}$ to C_i' to get $V_i \subseteq V_i' \subseteq V_i'$ and $C_i \supseteq C_i'$ such that all edges between V_i and C_i are blue. Since ϵ is sufficiently small, we have $(1-k\epsilon^2)\epsilon^{2l}n_2 \geqslant (1-k\epsilon)$. $\epsilon^{2l} n_2 > h$. So every edge between V_i and C_i is contained in a blue K_h , which implies that all edges between V_i and C_i are not NIM – H. Let $c = (1 - k\epsilon^2) \epsilon^{2l} n_2$ and $T = (V_1, \dots, V_p)$, then $T \subseteq$ T_{ι} is a red copy of $T_{\iota}(cp)$ consisting of NIM-H edges. For any $1 \leq i \leq p$, $K[V_i]$ is a blue clique with $|V_i| > h$, thus every edge in $K[V_i]$ is not NIM-H. Let $W' = V(G_n) \setminus (V(T) \cup X)$, then $C_1 \cup \cdots \cup C_p \cup D$ is a partition of W'. Recall the definition of D, then for any $w \in D$, there exist two indices $1 \le i(w) \ne j(w) \le p$ such that w has more than $c - \epsilon^{2l+2} n_2 = (1 - k \epsilon^2 - \epsilon^2) \epsilon^{2l} n_2$ blue neighbors in $V_{i(w)}$ and more than $c - (1 - \epsilon) \epsilon^{2i} n_2 =$ $(\epsilon - k\epsilon^2)\epsilon^{2l} n_2$ blue neighbors in $V_{i(w)}$. Since both of $K[V_{i(w)}]$ and $K[V_{j(w)}]$ are large blue cliques, every blue edge between w and $V_{i(w)} \cup V_{i(w)}$, is not NIM-H.

Combining all of the above, we know that every NIMH edge between V(T) and $V(G_n)\setminus V(T)$ must belong to one of the following four sets.

- (I) The edges between X and V(T), which are all red.
- ($[\![]\!]$) The edges between C_i and $\bigcup\limits_{j \neq i} V_j$, where $1 {\leqslant} i {\leqslant} p$.
- (${||\!||}$) The red edges between some $w\in D$ and $V_{{\scriptscriptstyle I}(w)} \cup V_{{\scriptscriptstyle I}(w)}$.
- (N) The edges between some $w \in D$ and $\bigcup_{t \neq i(w), j(w)} V_t$.

Let e_1 denote the number of NIM-H edges between V(T) and $V(G_n)\backslash V(T)$, then we have $e_1\leqslant t \cdot cp + (n-cp-t-\mid D\mid) \cdot c(p-1) +$

$$|D| \cdot (\epsilon^{2\ell+2}n_2 + (1-\epsilon)\epsilon^{2\ell}n_2 + c(p-2))$$
 (1) and

$$e(G_n) = e(T) + e_1 + |E(W' \cup X) \cap E(G_n)|$$
(2)

Now we choose an induced copy of $T_p(cp)$ in H(n,p,k). It is easy to see that the induced subgraph of H(n,p,k) on the remaining vertices, i. e. on $V(H(n,p,k))\setminus V(T_p(cp))$, is a copy of H(n-cp,p,k). Let e_2 be the number of edges between $T_p(cp)$ and H(n-cp,p,k), then we have

$$e_2 = (k-1) \cdot cp + (n-cp-k+1) \cdot c(p-1)$$
(3)

and

$$h(n, p, k) = t_p(cp) + e_2 + h(n - cp, p, k)$$
(4)

Since every edge in $E(W' \cup X) \cap E(G_n)$ is not contained in any monochromatic of H, we have $|E(W' \cup X) \cap E(G_n)| \leq f(n-cp,H)$, which implies that $|E(W' \cup X) \cap E(G_n)| - h(n-cp,p,k) \leq e(G_{n-cp}) - h(n-cp,p,k) = \Delta(n-cp)$, where G_{n-cp} is an NIM-H graph on n-cp vertices with f(n-cp,H) edges. So by Eqs. (2), we have

$$\Delta(n) = e(G_n) - h(n, p, k) \leqslant$$

$$(e_1 - e_2) + \Delta(n - cp)$$
(5)

If $e_1 < e_2$, then $\Delta(n) < \Delta(n-cp)$ and we are done. So assume $e_1 \ge e_2$. However, by Eqs. (1) and (3), we have $e_1 \le e_2$. The equality holds if and only if $D = \emptyset$, t = k-1, all edges between X and V(T) are NIM-H, and all edges between C_i and $\bigcup_{j \ne i} V_j$ are NIM-H for $1 \le i \le p$. Since $e(G_n) \ge h$ (n,p,k) and $T_p(n-cp-k+1)$ has more edges than any other p-chromatic graph on n-cp-k+1 vertices, we have $G_n = H(n,p,k)$. So $\Delta(n) = 0$ and we are done.

References

- [1] KEEVASH P, SUDAKOV B. On the number of edges not covered by monochromatic copies of axed graphs[J]. J. Combin. Theory Ser. B, 2004, 108: 41-53.
- [2] MA J. On edges not in monochromatic copies of axed bipartite graph[J]. J. Combin. Theory Ser. B, 2017,

- 123: 240-248.
- [3] LIU H, PIKHURKOO, SHARIFZADEH M. Edges not in any monochromatic copy of axed graph[J]. J. Combin. Theory Ser. B, 2019, 135: 16-43.
- [4] SIMONOVITS M. How to solve a Turan type extremal graph problem? (linear decomposition), Contemporary trends in dicrete mathematics [J]. Discrete Math. Theoret. Comput. Sci., 1997, 49: 283-305.
- [5] SIMONOVITS M. Extremal graph problems with

- symmetrical extremal graphs, additionnal chromatic conditions [J]. Discrete Mathematics, 1974, 7: 349-376.
- [6] ERDÖS K, STONE A H. On the structure of linear graphs [J]. Bull. Amer. Math. Soc. 1946, 52: 1087-1091.
- [7] SIMONOVITS M. A method for solving extremal problems in graph theory, stability problems [C]// Proc. Colloq., Tihany, Theory of Graphs. 1968: 279-319.

(上接第 327 页)

- [23] FERNANDEZ C, STEEL M F J. Multivariate student-t regression models: pitfalls and inference [J]. Biometrika, 1999, 86: 153-167.
- [24] LOUIS T A. Finding the observed information matrix when using the EM algorithm[J]. Journal of the Royal Statistical Society B, 1982, 44: 226-233.
- [25] MENG X L, RUBIN D B. Maximum likelihood estimation via the ECM algorithm: A general

- framework[J]. Biometrika, 1993, 80: 267-278.
- [26] TUKEY J W. One degree of freedom for non-Additivity[J]. Biometrics, 1949, 5: 232-242.
- [27] ZEGER S L, DIGGLE P J. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters [J]. Biometrics, 1994, 50: 689-699.