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Abstract: Given a graph H, let f(n,H) denote the maximum number of edges not contained in

any monochromatic copy of H in a 2-edge-coloring of K,. The Turdn number of a graph H,

denoted by ex(n, H), is the maximum number of edges in an n-vertex graph which does not

contain H as a subgraph. It is easy to see that f(n,H)=ex(n,H) for any H and n. We show

that this lower bound is tight for matching-critical graphs including Pertersen graph and vertex-

disjoint union of copies of cliques with same order.
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0 Introduction

Notations in this paper are standard. For a
graph G with subgraph H, we use G-E (H) to
denote the spanning subgraph on V(G) with edge
set E(G)\E (H) and G-V (H) to denote the
induced subgraph of G on vertex set V(G)\V(H).

Received: 2020-02-28; Revised: 2020-03-28

If G and H are two disjoint subgraphs, we use
G+ H to denote the graph obtained from G U H by
adding all edges between every vertex of G and
every vertex of H. As usual, denote the balanced
complete p-partite graph on n vertices by T, (n)
and its number of edges by ¢, (n). Let H(n,p k)=
Kio+T,(n—k+1) and h(n,p,k)=e(Hn,p,
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k)). The Turan number of a graph H, denoted by
ex(n,H), is the maximum number of edges in an
nvertex graph which does not contain H as a
subgraph. If an n-vertex graph G has ex(n, H)
edges and does not contain H as a subgraph, we
call G an extremal graph for H.

For a given graph H, let f(n,H) denote the
maximum number of edges not contained in any
monochromatic copy of H in a 2-edge-coloring of
K,. Tt is easy to see that f(n,H)=ex(n,H) for
any H and n. In 2004, Keevash and Sudakov
showed in Ref. [1] that this lower bound is tight
for a sufficiently large n if H is edgecritical or a
cycle of length 4. Here, we call a graph H with
chromatic number y (H) = p +1 edgecritical if there
exists some edge e in H such that y (H—e¢)=p.

Theorem 0, 1"
with chromatic number p+12=3, then

Sn,H)=ex(n,H) =t,(n)
for a suffiently large n.

Moreover, Keevash and Sudakov asked
whether f(n,H)=ex(n,H) for any H and any
sufficiently large n, and they obtained a general
upper bound that f(n,H)<<ex(n,H)+o(n*). In

2017, Ma'™ confirmed their problem for an infinite

If H is an edgecritical graph

family of bipartite graphs. Later, Liu, Pikhurko
and Sharifzadeh™ extended his result to a larger
family of bipartite graphs and proved a better
upper bound for all bipartite graphs.

Theorem 0.2 If H is bipartite, then

S, H) <ex(n,H)+0)
for a sufficiently large n.

Denote by M, the graph consisting of &
independent edges and call it a matching with size
k. Call a graph H with chromatic number y (H) =
p+1 k-matching-critical if there exists a matching
M, in H such that y(H—E(M,))=p and y (H —
X)=p+1 for any XSV (H) with | X |=F—1.
There are many interesting k-matching-critical
graphs including the Pertersen graph, see Ref.
[4]. In 1974, Simonovits® determined ex(n, H)
for matching-critical H and characterized its

extremal graph.

Theorem 0. 3"
graph with chromatic number y (H) = p + 1>
3, then

If H is a k-matching-critical

ex(n,H)=hn,p,k).
The unique extremal graph is H (n,p k).

In this paper, we will confirm Keevash and
Sudakov’s problem for matchingcritical H and
sufficiently large n. In fact, we will prove the
following theorem.

Theorem 0. 4
graph with chromatic number y (H) = p + 1=
3, then

If H is a k-matching-critical

f(?’lyH) =h(n Y2 9k>

for a sufficiently large n.

1 Preliminaries

By the classical Turan’ s theorem, if an
nvertex graph G does not contain K, as a
subgraph, then ¢(G)<it, , (n), with the equality
holds if and only if G =T,_, (n). Erdés and
Stone!® further proved that if an n-vertex graph G
contains a little more than z,_, (n) edges, then G
contains a copy of large complete p-partite graph.

Theorem 1. 1) Let p =2 and =1 be given
integers. Then for any ¢ > 0, there exists an
integer n,=n,(p,t,¢) such that: If a graph G on
n=mn, vertices contains more than ¢,_, (n) + =’
edges, then it contains T, (7p) as a subgraph.

In 1968, Simonovits'™ introduced the socalled
progressive induction which is similar to the
mathematical induction and Euclidean algorithm
and combined from them in a certain sense. It will
be our main tool in the proof of Theorem 0. 4.

Lemma 1. 1~ Let U= U7 U, be a set of
given elements, such that %, are disjoint subsets of
q, Let B be a condition or property defined on %
(i. e. the elements of A, may satisfy or not satisfy
B). Let A(n) be a function defined also on WU such
that A(n) is a nonnegative integer and

(a) if a satisfies B, then A(a) vanishes.

(b) there is an M, such that if n=>M, and a €
L, then either a satisfies B or there exist an n” and

an a’ such that
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%<n/ <nsa € MU and Ala) < ACa').

Then there exists an n, such that if n >n,,
from a € 9, follows that a satisfies B.

From now on in this paper, we associate every
graph we consider with a red/blue-edge-coloring.
For any two vertices u and v, call u a red (blue)
neighbor of v if the edge uv is colored red (blue).
If an edge e is not contained in any monochromatic
copy of a given graph H, then we call ¢ NIM-H.
If G consists of NIM-H edges, then we call G
NIM-H. For p=2 and disjoint vertex sets V,+-,
V, &SV (G), let G[V,] denote the induced
subgraph of G on V| and G[V,,++.,V, ] denote the
p-partite induced subgraph of G with parts V,,--+,
V,. I{ G is a complete graph, then we use K[V, ]
and (V,,++,V,) instead of G[V,] and G[V,, -,
v,

The following lemma is the same as Lemma
3. 2 in Ref. [1].

completeness.

We include the proof for
Lemma 1.2 Let p =2 and ¢t =1 be given
integers. Let H be a given graph. Then there
exists an integer n,=n,(p ,¢t,H) such that for any
n_>mn,:

containing at least ¢, (n) edges, then G contains a

If G is an NIM-H graph on n vertices

monochromatic copy of T, (zp).

Proof Let |V(H)|=h and t/:2t(p! gDy
Let n==ny:=n,(p,t’ s1/p(p—1)) be sufficiently
large, where n, (pst's1/p (p — 1)) is obtained

from Theorem 1. 1. Since

—1
e (G) >tp(n):<pT+o(1)) (’;)2

—2 1 n

(i G -D +o(D) (2) :
G contains T, (¢ p) as a subgraph by Theorem 1. 1.
Let T, p)=(V,,+,V,)ZG. Note that every edge
between V; and V; is NIM-H for 1< 7 ;< p.

Choose a vertex v, € V, arbitrarily. Assume
without loss of generality that at least half of the
edges between v, and V, are red. Denote the red
neighborhood of v, inV, by R, , then every vertex

v€V,U--UV,_, has at most 4" blue neighbors in

R,. Otherwise. let R’ denote the blue
neighborhood of v € V, U -+ UV,_, in R,. By
K [R']
monochromatic copy of K,. Therefore,

HU{v} forms a blue copy of K, or HU {v,}

forms a red copy of K,.,, which implies that there

Ramsey ~ s Theorem, contains a

either

exists a monochromatic copy of H using NIM-H
edges, a contradiction. Now, choose VIV &V, of
size t (p — 1)1 4"*7% arbitrarily for every 1<0i<C
p—1 and let W, =R ,\B,, where B, denotes the
set of all blue neighbors of every vertex in V{" U+
U v,

we have

According to the previous analysis,

(W, =R, =1 B, |=1/2— U v |4 =
tepl ATV —(p—1) « (p—1D 4197V =
t(p—1)1 4"P7P >,

Note that (V{", -, V", W,) &G is an
NIM-H graph and all edges between V{” U -
UV, and W, are red. So by a similar argument
as before, we have that every vertex in V" has at
most 4" blue neighbors in V" for any 1<<i 7 <<
p—1. Next, for 2<j<<p—1, we define (V{’ U=
vy, Uw, o, U UW,) S G recursively as
follows. Choose V> &SV~ V of size t (p—3j) !
4" == arbitrarily for every 1<X:<{p —; and let
W, ,=Vy " \B, i1, where B, ;. denotes
the set of all blue neighbors of every vertex in
V2 U--UVY2,. Then we have

‘ Wp*jJrl |:| V;j:jl+)1 |*‘ Bp—]—l ‘:
te(p—j+DI 40 —
t(p—j)e(p—j ) 40 =
t(p— )1 4" = e 4 >
and all edges between Vi’ U--UVY’, and W,
are red. At last, we get a p-partite graph (V{*"
W, ,W,)SG consisting of red edges. Note that
|[Vi#"V | =t, so G contains a red copy of T, (¢p).

We are done.

2 Proof of Theorem 0. 4

Let H be a kmatchingcritical graph with
chromatic number y (H) = p +1=>3. Since there

exist £k —1 vertices of H (s, p.k) such that after
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deleting them the chromatic number of the
obtained graph is p ., it follows from the definition
of k-matching-critical graphs that ex(n,H)=h (n,
psk). Let [V(H)|=h. Let n be a sufficiently
large integer. Let G, be the spanning subgraph of
K, consisting of NIM-H edges with e(G,)=f(n,
H). If e(G,)<<h(n, p, k), then we get a
contradiction to the fact f(n,H)=ex(n,H). So
we may assume that e(G,)=h(n,p . k).

Use progressive induction now. Let %, be the
set of NIM-H graphs G, with f(n,H) edges. Let
property B be e (G,)<<h (n,p,k). Let A(n)=
e(G,)—h(n, p,k). Then by our assumption,
A(n) is a nonnegative integer. So by Lemma 1.1,
we only need to find some n” such that n/2<<n"<ln
and A(n)<<An").

As e(GH)=h(n,p,k)=t,(n), by Lemma 1. 2,
G, contains a monochromatic copy of T, (n,p)
with n, being sufficiently large. Let R= (R, *,
R,) be ared copy of T,(n,p) in G, , then for any
1<<i<<p, the maximum size of a red matching in
K[R,] is at most £ — 1. Otherwise, let {e; s+,
e,} be a red matching in K[ R, ], then these edges
and h — 2k arbitrary other vertices in R,, together
with h vertices in every other R, (i #1) will form a
graph containing a red copy of H using NIM-H
edges, a contradiction. So we can find a red copy
of T, (n,p) with n, =n, —2k in R, say T, =
(V. V), such that K[V{” ] is a blue clique
for every 1 <X i <X p. Therefore, all edges in
K[V ] are not NIM-H for 1<i<{p.

Let ¢ € R™ be sufficiently small. We define a
set of vertices X = {x,, **» x,} recursively as
follows. If there exists some vertex x; € V(G)\
V(T,) such that x; has at least ¢*n, red neighbors
in each part of T,, then there exists a copy of
T,(*n,p)&T,, denoted by T,, such that x, is
joint to all vertices of T, by red edges; For i=2, if
there exists some vertex x; € V(G )HO\V (T,_)
such that x; has at least ¢*n, red neighbors in each
there exists a copy of
T, n,p)ZST, |, denoted by T, such that x; is

joint to all vertices of T'; by red edges. Since T, &

part of T, ,, then

T, E&T,, every vertex of {x,,**,x;} is joint
to every vertex of T; by a red edge. We claim that
this process stops within £ —1 steps. Otherwise,
there exists a copy of T, (*n,p), denoted by
T,= (V¥ , -, V%), such that every vertex of
{x1,*»x,} is joint to every vertex of T, by a red
edge. Then {x,,**,x,} and h —k arbitrary other
vertices in V{*', together with i vertices in every
other V{* (i 41) will form a graph containing a red
copy of H using NIM-H edges, a contradiction.
Therefore, 0<C/<<k — 1. Let T,=(V{", -, V)
and W=V (G )HO\(V(T,)UX), then for any vertex
w €W, there exists some 1<(i<{p such that w has

* So we can

less than ¢*"*n, red neighbors in V{”.
get a partition of W=C/U--UC, UD as follows.
For any 1<0i<<p ., if w €W has less than ¥ *n, red
neighbors in V{” and at least (1 — ¢) ¢*n, red
neighbors in every V¢ with j #i, let w € C’;
Otherwise, i. e. » there exist two indices 1<0i 7 << p
such that w €W has less than ¢**?n, red neighbors
in V! and less than (1—¢)¢”n, red neighbors in
VP, let w€D.

Claim 2. 1
V/CVY? with |V | >0 —Ek) |V | such that all
edges between V/ and C/ are blue.

Proof

For any 1<Xi < p, there exists

Assume i = 1 without loss of
generality. Choose a maximal matching {x,y,,*,
z.v,} between VY and C, where z, € VI’ and
y,€C, for 1 <<s <<:t. Note that t <<k — 1.
Otherwise, by the definition of C{. v, has at least
(1= *n, red neighbors in V§” for any 1<{s <<k
and j==2. So y;.**,y; have at least (1—Fkc)*n,
common red neighbors in V{” for any j =>2. Since
n, is sufficiently large, we can choose ¢ sufficiently
small such that (1 —4kc¢)¥n, >h. For j =2, let
N, & V" be a
neighborhood of y,, -

common red
.y, with |N,~|:h. Then
, 2.y, ) and h — 2k arbitrary other

subset of the

(Z1y1s oo
vertices in V{”, together with N,,++, N, will form
a graph containing a red copy of H using NIM-H
edges, a contradiction. Let N be the set of all red
neighbors of y,,:+,y, in V{”. By the definition of
Cl, we have | N | <<t « ¥ n, <<k o Hn,=
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k2 IVS” |, By the maximality of {x,yi.*sx,y,}»
all edges between V’\N and Ci\{x,,"
blue. Moreover, by the definition of N, all edges
between V" \ N and C’, are blue.
[VIPAN [ > =k |V |, we are done.
Since VISV SV, K[V,] is a blue clique
for any 1<Xi<{p. So by Claim 2. 1, for every 1<

c,x,} are

Note that

i<<p, we can move k| V" | vertices from V{” to
Clto get V,S VSV and C, 2C’ such that all
edges between V; and C; are blue. Since ¢ is
sufficiently small, we have (1—~&*)*n,=(1—k).
#'n,>h. So every edge between V; and C; is
contained in a blue K,, which implies that all
edges between V,; and C; are not NIM — H. Let
c=U0—k*)Fny and T=(V,,++,V,), then TC
T, is a red copy of T, (cp) consisting of NIM-H
edges. For any 1<<i<{p, K[V,] is a blue clique
with |V, | >h, thus every edge in K[V, ] is not
NIM-H. Let W' =V (G)H\(V(T) U X), then
C,U--UC,UD is a partition of W’. Recall the
definition of D, then for any w € D, there exist
two indices 1<Ci (w) #j (w)<<p such that w has
more than ¢ — & *n, = (1 — kZ — &) *n, blue
neighbors in V., and more than ¢ —(1—)*n, =
(¢—k*)*n, blue neighbors in V. Since both of
K[V, ] and K [V;.,] are large blue cliques,
every blue edge between w and V., UV, » is not
NIM-H.

Combining all of the above, we know that every
NIMH edge between V(T) and V(G,)\V(T) must
belong to one of the following four sets.

(1) The edges between X and V(T), which
are all red.

(II) The edges between C; and _g_V, , where
1<i<<p.
(IM) The red edges between some w &€ D and

Vi UVﬂm-
(IV) The edges between some w € D and
Uf,z',m),,(u-)vz-

Let e, denote the number of NIM-H edges
between V(T) and V(G,)\V(T), then we have
en<lscp+n—cp—L(—|D|)ec(p—1 +

[ D e ("ny,+ A —OFn, +c(p—2)) (1

and

e(G)=e(T)+e + EW UX)NEWG, |

(2)
Now we choose an induced copy of T,(cp) in
H(n, p,k).
subgraph of H(n,p .k) on the remaining vertices,
ie. on V(H(n,p ,k))\V(T,(cp)), is a copy of
Hm—cp.p.k). Let e, be the number of edges

It is easy to see that the induced

between T, (¢cp) and H (n —cp, p, k), then

we have
e;=(k —1)ecpt+n—cp—k—+1)ec(p—1
(€D
and
hn,psk)=t,(cp) +es+hn—cp,psk))
€]

Since every edge in E(W UX)NE(G,) is not
contained in any monochromatic of H, we have
[EW'UXONEWG,) I <f(n—cp,H), which
implies that |[E(W UX)NEWG) | —h(n—cp.p,
F)<e(G,—,) —hn—cprprk)=A(n—cp),
where G,—,, is an NIM-H graph on n—cp vertices
with f(n—cp,H) edges. So by Egs. (2), we have

An) =e(G,) —hn,p.k) <
(e, —ey) +An —cp) (5)

If e,<<e,, then A(n)<<A(n—cp) and we are
done. So assume e¢; =>¢,. However, by Egs. (1)
and (3), we have e; <Ce¢,. The equality holds if and
only if D=@, (=F—1, all edges between X and
V(T) are NIM-H, and all edges between C; and
jgéJ[Vj are NIM-H for 1<{i<{p. Since ¢ (G,)=h
(n,psk) and T, (n —cp —Fk+1) has more edges
than any other p-chromatic graph on n—cp —k+1
vertices, we have G, =H (n,p.k). So A(n)=0

and we are done.
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