[1] |
ERDS P. Extremal Problems in Graph Theory[M]. Fiedler (Ed.), Theory of Graphs and its Applications, Academic Press, 1965: 29-36.
|
[2] |
ERDS P, Gallai T. On maximal paths and circuits of graphs[J]. Acta Math. Acad. Sc.i Hungar., 1959, 10: 337-356.
|
[3] |
FAN G. The Erds-Sós conjecture for spiders of large size[J]. Discrete mathematics, 2013, 313: 2513-2517.
|
[4] |
FAN G, HONG Y, LIU Q. The Erds-Sós conjecture for spiders[J]. Preprint, arXiv:1804.06567, 2018.
|
[5] |
FAN G, SUN L. The Erds-Sós conjecture for spiders[J]. Discrete Math., 2007, 307(23): 3055-3062.
|
[6] |
MOSER W, PACH J. Recent Developments in Combinatorial Geometry[M]// New Trends in Discrete and Computational Geometry, New York: Springer, 1993.
|
[7] |
KALAIG G. Micha perles geometric proof of the Erds-Sós conjecture for caterpillars[EB/OL]. [2018-05-22]https://gilkalai.wordpress.com/2017/08/29/micha-perles-geometric-proof-of-the-erdos-sos-conjecture-for-caterpillars/ (2017). Accessed 19 April 2018.
|
[8] |
MCLENNANA. The Erds-Sós Conjecture for trees of diameter four[J]. J. Graph Theory, 2005, 49(4): 291-301.
|
[9] |
SIDORENKO A F. Asymptotic soultion for a new class of forbidden r-graphs[J]. Combinatorica, 1989, 9: 207-215.
|
[10] |
HOU X, LV C. Bipartite version of the Erds-Sós conjecture[J]. J. Math. Research Appl., in press.
|
[11] |
WOZNIAK M. On the Erds-Sós conjecture[J]. J Graph Theory, 1996, 21: 229-234.
|
[1] |
ERDS P. Extremal Problems in Graph Theory[M]. Fiedler (Ed.), Theory of Graphs and its Applications, Academic Press, 1965: 29-36.
|
[2] |
ERDS P, Gallai T. On maximal paths and circuits of graphs[J]. Acta Math. Acad. Sc.i Hungar., 1959, 10: 337-356.
|
[3] |
FAN G. The Erds-Sós conjecture for spiders of large size[J]. Discrete mathematics, 2013, 313: 2513-2517.
|
[4] |
FAN G, HONG Y, LIU Q. The Erds-Sós conjecture for spiders[J]. Preprint, arXiv:1804.06567, 2018.
|
[5] |
FAN G, SUN L. The Erds-Sós conjecture for spiders[J]. Discrete Math., 2007, 307(23): 3055-3062.
|
[6] |
MOSER W, PACH J. Recent Developments in Combinatorial Geometry[M]// New Trends in Discrete and Computational Geometry, New York: Springer, 1993.
|
[7] |
KALAIG G. Micha perles geometric proof of the Erds-Sós conjecture for caterpillars[EB/OL]. [2018-05-22]https://gilkalai.wordpress.com/2017/08/29/micha-perles-geometric-proof-of-the-erdos-sos-conjecture-for-caterpillars/ (2017). Accessed 19 April 2018.
|
[8] |
MCLENNANA. The Erds-Sós Conjecture for trees of diameter four[J]. J. Graph Theory, 2005, 49(4): 291-301.
|
[9] |
SIDORENKO A F. Asymptotic soultion for a new class of forbidden r-graphs[J]. Combinatorica, 1989, 9: 207-215.
|
[10] |
HOU X, LV C. Bipartite version of the Erds-Sós conjecture[J]. J. Math. Research Appl., in press.
|
[11] |
WOZNIAK M. On the Erds-Sós conjecture[J]. J Graph Theory, 1996, 21: 229-234.
|