Vol. 50, No. 3 Mar. 2020

文章编号:0253-2778(2020)02-0289-05

The Erdős-Sós conjecture for 2-center spiders

WANG Shicheng, HOU Xinmin

(School of Mathematical Sciences University of Science and Technology of China, Hefei 230026, China)

Abstract: The Erdős-Sós Conjecture states that if G is a graph with average degree more than k-2, then G contains every tree on k vertices. A spider can be seen as a tree with at most one vertex of degree more than two. Fan, Hong, and Liu proved that the conjecture holds for spiders. In this note, we define a 2-center spider as a tree with at most two adjacent vertices of degree more than two and show that the Erdős-Sós Conjecture holds for 2-center spiders with legs of lengths at most two adjacent vertices of degree more than 2 as 2-center spider. We prove that if G is a graph on n vertices with average degree more than k-2, then G contains every 2-center spider with k vertices, where length of 2-center spider legs is no more than 2.

Key words: Erdős-Sós conjecture, tree, spider, 2-center spider

CLC number: O157. 4 **Document code:** A doi:10.3969/j.issn.0253-2778.2020.03.005

2010 Mathematics Subject Classification: 94B15

Citation: WANG Shicheng, HOU Xinmin. The Erdős-Sós Conjecture for 2-center spiders[J]. Journal of University of Science and Technology of China, 2020,50(3):289-293.

王仕成,侯新民. 关于 2-中心蜘蛛树的 Erdős-Sós 猜想[J]. 中国科学技术大学学报,2020,50(3): 289-293.

关于 2-中心蜘蛛树的 Erdős-Sós 猜想

王仕成,侯新民

(中国科学技术大学数学科学学院,安徽合肥 230026)

摘要: Erdős-Sós 猜想:如果图 G 平均度大于 k-2,则 G 包含任一 k 个顶点的数. 蜘蛛树是指最多只有一个点度超过 2 的树. 范更华、洪艳梅和刘清海证明了该猜想对所有蜘蛛树成立. 本文我们定义 2 中心蜘蛛树为至多两个相邻点度超过 2 的树并且证明了 Erdős-Sós 猜想对腿长至多为 2 的 2 中心蜘蛛树都成立.

关键词: Erdős-Sós 猜想; 树;蜘蛛树;2-中心蜘蛛树

0 Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). The sets of vertices and edges of a graph G

are denoted by V(G) and E(G), respectively, and e(G) = |E(G)|. The following conjecture is well known as the Erdős-Sós conjecture.

Conjecture 0. 1 (Erdős-Sós conjecture^[1]). Every graph G with |E(G)| > (k-2) |V|/2

 $\textbf{Received:}\ 2019\text{-}05\text{-}22\textbf{;}\ \textbf{Revised:}\ 2019\text{-}05\text{-}28$

Biography: WANG Shicheng, male, Master candidate. Research field: Combinatorial graph theory.

E-mail: wsc20161@mail.ustc.edu.cn

Corresponding author: HOU Xinmin, PhD/associate professor. E-mail: xmhou@ustc.edu.cn

contains every tree of order k as a subgraph.

There are many partial results in the study of the conjecture, especially for special family of trees on *k* vertices, such as:

- (a) path (Erdős and Gallai^[2]);
- (b) spiders (A spider is a tree with at most one vertex of degree more than two^[3-5];
- (c) caterpillars (A caterpillar is a tree in which the vertices of degree more than one induce a path. $Perle^{[6-7]}$);
- (d) trees of diameter at most four (McLennan^[8]), and (e) trees with a vertex joined to at least $\lfloor \frac{k}{2} \rfloor 1$ vertices of degree one^[9].

In this note, we consider a special family of spider-like trees: 2-center spider. A leaf of a graph is a vertex of degree one, and the neighbor of a leaf is called the support vertex of it. Let G be a graph. We use L(G) and S(G) denote the set of leaves of G and the set of support vertices of and S (G) to denote the set of leaves of G and the set of support vertices of G, respectively. The diameter of G is the length of a longest path in G. As we know, a spider is a tree with at most one vertex of degree at great than two. A 2-center spider is a tree with at most two adjacent vertices of degrees greater than two. Let T be a 2-center spider. If $\Delta(T) \leq 2$ then any vertex of T can be seen as the center; if $\Delta(T) \ge 3$, we call the vertices of degrees more than two the centers. The shortest path joining a leaf to the centers is called a leg of T.

Theorem 0.1 Every graph G with |E(G)| > (k-2) |V|/2 contains every 2-center spider of order k and with legs of lengths no more than 2.

Here is some notation which will be used in the proof. Let G be a graph. For $v \in V(G)$, we write $N_G(v)$ for the set of neighbors of v in G, and $N_G^i(v)$ for the set of vertices with distance i from v in G. For S, $T \subseteq V(G)$, write $E_G(S, T)$ for the set of edges with one end in S and the other in T, write G[S] be the subgraph induced by S. We give the proof of Theorem 0.1 in the next section. Section 2 will give some remarks and

discussions.

1 Proof of Theorem 0, 1

We first give two useful observations.

Lemma 1. 1 Let T be a tree and G be a graph. Suppose v_1 , v_2 , $w_1 \in L(T)$ and $v, w \in S(T)$ such that v_1v , v_2v , $w_1w \in E(T)$. Let $T' = T - vv_1 + v_1v_2$. If T can be embedded in G and there is a perfect matching between $\{v_1, v_2\}$ and $\{w, w_1\}$ in G, then G contains a copy of T' as a subgraph.

Proof Let M be a matching between $\{v_1, v_2\}$ and $\{w, w_1\}$. If $M = \{v_1w, v_2w_1\}$, then $T = \{vv_1, ww_1\} + \{wv_1, v_2w_1\}$ is a subgraph of G isomorphic to T'. If $M = \{v_1w_1, v_2w\}$ then $T = \{vv_2, ww_1\} + \{wv_2, v_1w_1\}$ is a subgraph of G isomorphic to T'.

Lemma 1.2 Suppose G is a graph. Let $X = \{x_1, x_2\} \subseteq V(G)$ and $Y = \bigcup_{i=1}^m \{y_i, z_i\} \subseteq V(G)$. If $|E_G(X, Y)| > 2m$, then there exists a pair $\{y_i, z_i\}$ such that there is a perfect matching between X and $\{y_i, z_i\}$ in G.

Proof Since $|E_G(X, Y)| > 2m$, there must be a pair $Y_i = \{y_i, z_i\}$ so that $|E_G(X, Y_i)| \ge 3$. Thus the bipartite subgraph with partitions X, Y_i contains a perfect matching.

Lemma 1.3^[10] If G is a graph on n vertices with $e(G) > \frac{n(k-2)}{2}$, then there is a subgraph H $\Box G \text{ with } e(H) > \frac{|V(H)|(k-2)}{2} \text{ and } \delta(H) \geqslant \frac{k}{2} \rfloor.$

Now we are ready to give the proof of Theorem 0.1.

Proof of Theorem 0.1 By Lemma 1.3, we may assume $\delta(G) \geqslant \frac{k}{2}$. By the result of Erdős and Gallai (see (a)) and the result of Fan, Hong and Liu (see (b)), it is sufficient to show the theorem for T with two adjacent vertices of degrees more than two. Denote by a and b the two centers of T, respectively. Let $L_T(a) = N_T(a) \cap L(T)$ and

 $L_T(b) = N_T(b) \cap L(T)$. Without loss of generality, assume $|L_T(a)| \ge |L_T(b)|$. Let $L_T^2(a) = N_T^2(a) \setminus N_T(b)$ and $L_T^2(b) = N_T^2(b) \setminus N_T(a)$. Let $S(L_T^2(a)) = N_T(a) \setminus (L_T(a) \cup \{b\})$ and $S(L_T^2(b)) = N_T(b) \setminus (L_T(b) \cup \{a\})$. Since the length of each leg of T is at most 2, we have

$$V(T) = L_T^2(a) \bigcup L_T^2(b) \bigcup S(L_T^2(a)) \bigcup S(L_T^2(b)) \bigcup L_T(a) \bigcup L_T(b) \bigcup \{a,b\}.$$

We use induction on the number of $|L_T^2(a)|$. If $|L_T^2(a)| = 0$, then T has diameter at most 4. So the base case follows from the result of McLennan (see (d)). Now suppose $|L_T^2(a)| = t \ge 1$ and the result holds for all 2-center spider trees T' with a center c having $|L_T^2(c)| < t$. Suppose to the contrary that G does not contain T as a subgraph. Choose $z \in L_T^2(a)$. Let T' = T - z + za. Then $L_{T'}^2(a) = L_T^2(a) \setminus \{z\}$ and $L_{T'}(a) = L_T(a) \cup \{z\}$, s(z), where s(z) is the support vertex of z in T. Then $|L_{T'}^2(a)| = t - 1$. By induction hypothesis, T' can be embedded in G.

Claim 1.1 (i) $L_{T'}(a)$ is an independent set in G:

(ii)
$$N_G(L_{T'}(a)) \subseteq V(T)$$
.

Proof of the claim 1.1 (i) Suppose to the contrary that there are x, $y \in L_{T'}(a)$ such that $xy \in E(G)$. Without loss of generality, assume $y \neq z$. Then we have $T \cong T' - \{ay, az\} + xy \subseteq G$, a contradiction.

(ii) Suppose to the contrary that there is a leaf $x \in L_{T'}(a)$ such that x has a neighbor $h \notin V(T')$. If x=z then $T \cong T' - s(z)a + zh$ contained in G, otherwise $T \cong T' - za + xh$ is a subgraph of G, a contradiction.

Let $p = |L_T(a)|$ and $q = |L_T(b)|$. Note that $p \geqslant q$ and $|L_{T'}(a)| = p + 2$ and $L_{T'}(b) = L_T(b)$.

Case 1.1
$$p \ge 2$$
.

Let x, y be two leaves in $L_{T'}(a)$. By Claim 1. 1, $L_{T'}(a)$ is an independent set. Let $U=L_{T'}^2(a) \cup L_{T'}^2(b)$ and W be the set of support vertices of U in T'. Then $T'[U \cup W]$ is a matching in T'. Denote m=|U|. We have m=|U|=|W|=

$$\frac{\mid V(T)\mid -\mid L_{T'}(a)\mid -\mid L_{T'}(b)\mid -\mid \{a,b\}\mid}{2} = \frac{k-p-q-4}{2}.$$

By Claim 1.1(ii), $N_G(x)$, $N_G(y) \subseteq V(T')$.

Case 1.1.1 $x \in N_G(b) \cap N_G(L_T(b))$.

We claim that $y \notin N_G(b) \cup N_G(L_T(b))$. If not, then there must be a leaf $b' \in L_T(b)$ such that there is a matching M between $\{x, y\}$ and $\{b, b'\}$. By Lemma 1.1, there is a copy of T'-ax+xy which can be embedded in G. This is impossible since $T \cong T' - ax + xy$. Since $\delta(G) \geqslant \frac{k}{2}$, $|E_G(x, U \cup W)| \geqslant \frac{k}{2} - 2 - q$ and $|E_G(y, U \cup W)| \geqslant \frac{k}{2} - 1$. So, $|E_G(\{x, y\}, U \cup W)| \geqslant k - q - 2 \geqslant 2$. By Lemma 1.2, the since $|E_G(\{x, y\}, U \cup W)| \geqslant k - q - 2 \geqslant 2$.

3 > 2m. By Lemma 1. 2, there is a matching between $\{x,y\}$ and a pair $\{u,w\}$ with $uw \in E(T' \cup U \cup W)$. By Lemma 1. 1, G contains a copy of T, a contradiction.

Case 1.1.2 $x \in N_G(b)$ but $x \notin N_G(L_T(b))$.

With a similar reason with Case 1.1.1, we have $y \notin N_G(L_T(b))$. Since $\delta(G) \geqslant \frac{k}{2}$, we have $|E_G(x, U \cup W)| \geqslant \frac{k}{2} - 2$ and $|E_G(y, U \cup W)| \geqslant \frac{k}{2} - 2$. Therefore, $|E_G(\{x,y\}, U \cup W)| \geqslant k - 4 > 2m$. By Lemma 1.2, there is a matching between $\{x,y\}$ and a pair $\{u,w\}$ with $uw \in E(T' \cup U \cup W)$. By Lemma 1.1, G contains a copy of T, a

contradiction. Case 1.1.3 $x \notin N_G(b) \bigcup N_G(L_{T'}(b))$. Since $\delta(G) \geqslant \frac{k}{2}$, we have $|E_G(x, U \bigcup W)| \geqslant$

 $\frac{k}{2}-1$ and $|E_G(y,U\cup W)|\geqslant \frac{k}{2}-2-q$. Therefore, $|E_G(\{x,y\},U\cup W)|\geqslant k-3-q>2m$. By Lemma 1.2, there is a matching between $\{x,y\}$ and a pair $\{u,w\}$ with $uw\in E(T'[U\cup W])$. By Lemma 1.1, G contains a copy of T, a contradiction.

Case 1.1.4 $x \notin N_G(b)$ but $x \in N_G(L_T(b))$. Let $x \in N_G(b')$, where $b' \in L_T(b)$. We claim that $y \notin N_G(b)$. If not, there is a matching M between $\{x, y\}$ and $\{b, b'\}$. By Lemma 1.1, there is a copy of $T \cong T' - ay + by + xb'$ which can be embedded in G. Since $\delta(G) \geqslant \frac{k}{2}$, we have $|E_G(x, U \cup W)| \geqslant \frac{k}{2} - 1 - q$ and $|E_G(y, U \cup W)| \geqslant \frac{k}{2} - 1 - q$. Therefore, $|E_G(\{x, y\}, U \cup W)| \geqslant k - 2 - 2q > 2m$. By Lemma 1.2, there is a matching between $\{x, y\}$ and a pair $\{u, w\}$ with $uw \in E(T'[U \cup W])$. By Lemma 1.1, G contains a copy of T, a contradiction.

Case 1. 2 p = 1.

Case 1. 2. 1 q = 0

Then
$$|E_G(\{x,y\}, U \cup W)| \ge 2 \cdot (\frac{k}{2} - 2) = k - 4 > k - 5 = 2m$$
. By Lemma 1. 2, there is a matching between $\{x,y\}$ and a pair $\{u,w\}$ with $uw \in E(T'[U \cup W])$. We again get a contradiction by Lemma 1.1 with the same reason as Case 1.1.1.

Case 1. 2. 2 q = 1

Let $L_T(b) = \{ b' \}$. Set $U' = U \cup \{ b' \}$ and $W' = W \cup \{ b \}$. Then $|U'| = |W'| = m + 1 = \frac{k - 6}{2} + 1 = \frac{k - 4}{2}$. Since $\delta(G) \geqslant \frac{k}{2}$, $|E_G(\{x, y\}, U' \cup W')| \geqslant 2 \cdot (\frac{k}{2} - 1) = k - 2 > k - 4 = 2(m + 1)$.

By Lemma 1.2, there is a matching between $\{x, y\}$ and a pair $\{u, w\}$ with $u \in U'$ and $w \in W'$. Again we get a contradiction by Lemma 1.1 with the same reason as Case 1.1.1.

Case 1.3
$$p = q = 0$$
.

In this case, we may assume $|L_T^2(a)| \le |L_T^2(b)|$ by the symmetry of a and b (otherwise, we may choose $z \in L_T^2(b)$ instead of $z \in L_T^2(a)$). Then $|L_T^2(a)| \le \lfloor \frac{k-2}{4} \rfloor$. Without loss of generality, assume x = z. Then y is the support vertex of x in T. Since $\delta(G) \ge \frac{k}{2}$, we have $|E_G(x, U \cup W)| \ge \frac{k}{2} - 2$ and $|E_G(y, U \cup W)| \ge \frac{k}{2} - 2$

 $\frac{k}{2}-2$. We claim that $|E_G(x,U\cup W)|=|E_G(y,U\cup W)|=k$. Otherwise, at least one of x,y has neighbors more than $\frac{k}{2}-2$ in $U\cup W$, then $|E_G(\{x,y\},U\cup W)|>2 \cdot (\frac{k}{2}-2)=k-4=2m$. Similar as Case 1. 1. 1, by Lemmas 1. 1 and 1. 1, we get a contradiction. The claim also implies that $x,y\in N_G(b)$.

Claim 1.2 For every edge $e = uw \in E(T'[U \cup W])$ with $u \in L^2_T(a)$, we have either $V(e) \cap N_G(x) \neq \emptyset$ or $V(e) \cap N_G(b) \neq \emptyset$.

Proof of the claim 1. 2 If not, we claim that uy, $wy \in E(G)$. Otherwise, set $U' = U \setminus \{u\}$ and $W' = W \setminus \{w\}$, then $|U'| = m - 1 = \frac{k - 4}{2} - 1 = \frac{k - 6}{2}$. But $|E_G(x, U' \cup W')| = \frac{k}{2} - 2$ and $|E_G(y, U' \cup W')| = \frac{k}{2} - 2$ and $|E_G(y, U' \cup W')| = k - 2 - 1 = \frac{k}{2} - 3$. So, $|E_G(\{x, y\}, U' \cup W')| = k - 5 > 2 |U'|$. Therefore, by Lemmas 1. 2 and 1. 1, we can get a contradiction similar as Case 1. 1. 1. Now set T'' = T' - uw + yu. Then $T'' \cong T'$ and $L_{T'}(a) = \{x, w\}$ but $wb \notin E(G)$. We reset U' = U and $W' = (W \setminus \{w\}) \cup \{y\}$. Then $|U'| = |W'| = m = \frac{k - 4}{2}$. But $|E_G(x, U' \cup W')| = \frac{k}{2} - 2$ and $|E_G(w, U' \cup W')| \ge \frac{k}{2} - 1$. So, $|E_G(\{x, w\}, U' \cup W')| = k - 3 > 2m$. Again by Lemmas 1. 2 and 1. 1, we can get a contradiction similar as Case 1. 1. 1.

Now we claim that we can find a copy of T in G with centers x and b. Since $|E_G(x,U \cup W)| \geqslant \frac{k-4}{2}$, there are at least $\lceil \frac{k-4}{4} \rceil$ edges e of $E(T' \lceil U \cup W \rceil)$ such that $V(e) \cap N_G(x) \neq \emptyset$. Since $|L_T^2(a)| \leqslant \lfloor \frac{k-2}{4} \rfloor \backslash \lceil \frac{k-4}{4} \rceil$, we can choose $|L_T^2(a)|$ edges in $E(T' \lceil U \cup W \rceil)$ connected to x (we prefer to choose the edges with one end in $L_{T'}^2(a)$). Note that $|L_{T'}^2(a)| \leqslant |L_T^2(a)|$, for the rest edges with one

end in $L_T^2(a)$, by Claim 1. 2 and our choice of edges connected to x, this edge must have one end adjacent to b, and so it can be seen as an edge of a leg of length 2 connected to b. For the other edges of $E(T'[U \cup W])$, each edge has one end in $L_T^2(b)$, it is still an edge of a leg connected to b. Moreover, the path yab is also a leg of length 2 connected to b. Clearly, the resulting tree is isomorphic to T, as desired.

This completes the proof of the theorem.

2 Remarks and Discussions

In the study of the Erdős-Sós Conjecture, the spiders have been well studied and verified completely by Ref. [4] recently, but the first step to attack the special family is to show the Erdős-Sós Conjecture holds for spiders with legs of length at most two (Woźniak^[11]). In this note, we initially study the 2-center spiders, a generalization of spider, and prove that the Erdős-Sós Conjecture holds for 2-center spiders with legs of length at most two. We hope that one can show the Erdős-Sós Conjecture holds for 2-spiders with no restriction on the length of legs in the near future.

References

[1] ERDÖS P. Extremal Problems in Graph Theory[M].

- Fiedler (Ed.), Theory of Graphs and its Applications, Academic Press, 1965; 29-36.
- [2] ERDÖS P, Gallai T. On maximal paths and circuits of graphs[J]. Acta Math. Acad. Sc. i Hungar., 1959, 10: 337-356.
- [3] FAN G. The Erdös-Sós conjecture for spiders of large size[J]. Discrete mathematics, 2013, 313: 2513-2517.
- [4] FAN G, HONG Y, LIU Q. The Erdös-Sós conjecture for spiders[J]. Preprint, arXiv:1804.06567, 2018.
- [5] FAN G, SUN L. The Erdös-Sós conjecture for spiders [J]. Discrete Math., 2007, 307(23): 3055-3062.
- [6] MOSER W, PACH J. Recent Developments in Combinatorial Geometry [M]// New Trends in Discrete and Computational Geometry, New York: Springer, 1993.
- [7] KALAIG G. Micha perles geometric proof of the Erdös-Sós conjecture for caterpillars[EB/OL]. [2018-05-22] https://gilkalai. wordpress. com/2017/08/29/micha-perles-geometric-proof-of-the-erdos-sos-conjecture-for-caterpillars/ (2017). Accessed 19 April 2018.
- [8] MCLENNANA. The Erdös-Sós Conjecture for trees of diameter four [J]. J. Graph Theory, 2005, 49(4): 291-301.
- [9] SIDORENKO A F. Asymptotic soultion for a new class of forbidden r-graphs[J]. Combinatorica, 1989, 9: 207-215.
- [10] HOU X, LV C. Bipartite version of the Erdös-Sós conjecture[J]. J. Math. Research Appl., in press.
- [11] WOZNIAK M. On the Erdös-Sós conjecture [J]. J Graph Theory, 1996, 21: 229-234.

(上接第 281 页)

- [15] SUN W, XIONG B S, HUANG J P, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and LMD[J]. Journal of Vibration and Shock, 2012, 31: 153-156.
- [16] YAO Q B, YANG Z C, LI B. Damping identification of materials using wavelet transform [J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26: 850-855.
- [17] WANG C, ZHU H P, WANG B. Identifying damping
- ratio of cable structures using complex wavelet transform [J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40: 115-118,
- [18] YING H Q, LIU J M, SHEN S. Half-power bandwidth method and INV damping ration solver study[J]. Noise and Vibration Control, 2006, 25: 4-6.