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The Erdos-Sos conjecture for 2-center spiders
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Abstract: The Erdés-Sos Conjecture states that if G is a graph with average degree more than £ —2,
then G contains every tree on & vertices. A spider can be seen as a tree with at most one vertex of
degree more than two. Fan, Hong, and Liu proved that the conjecture holds for spiders. In this
note, we define a 2-center spider as a tree with at most two adjacent vertices of degree more than
two and show that the Erd6s-Sés Conjecture holds for 2-center spiders with legs of lengths at
most two adjacent vertices of degree more than 2 as 2-center spider. We prove that if G is a graph

on n vertices with average degree more than £ —2, then G contains every 2-center spider with £

vertices, where length of 2-center spider’ legs is no more than 2.
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0 Introduction

The graphs considered in this paper are finite,
undirected, and simple (no loops or multiple

edges). The sets of vertices and edges of a graph G

Received: 2019-05-22; Revised: 2019-05-28

are denoted by V(G) and E(G), respectively, and
e(G)=|E(G)|. The following conjecture is well
known as the Erdos-Sos conjecture.

Fﬂ)

Conjecture 0, 1  (Erdds-S6s conjecture

Every graph G with |E(G) | >k —2) |V |/2
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contains every tree of order k£ as a subgraph.

There are many partial results in the study of
the conjecture, especially for special family of trees
on k vertices, such as:

(a) path (Erdés and Gallai"®) ;

(b) spiders (A spider is a tree with at most
one vertex of degree more than two™";

(c¢) caterpillars ( A caterpillar is a tree in
which the vertices of degree more than one induce
a path. Perlel®);

(d) trees of diameter at most four

(McLennan™), and (e) trees with a vertex joined

k : ]
to at least L?J—l vertices of degree one!™.

In this note, we consider a special family of
spider-like trees: 2-center spider. A leaf of a graph
is a vertex of degree one, and the neighbor of a leaf
is called the support vertex of it. Let G be a
graph. We use L(G) and S(G) denote the set of
leaves of G and the set of support vertices of and S
(G) to denote the set of leaves of G and the set of
support vertices of G, respectively. The diameter
of G is the length of a longest path in G. As we
know, a spider is a tree with at most one vertex of
degree at great than two. A 2-center spider is a
tree with at most two adjacent vertices of degrees
greater than two. Let T be a 2-center spider. If
A(T)< 2 then any vertex of T can be seen as the
center; if AC(T)=3, we call the vertices of degrees
more than two the centers. The shortest path
joining a leaf to the centers is called a leg of T.

Theorem 0.1 Every graph G with |[E(G)|>
(k—2) |V |/2 contains every 2-center spider of
order £ and with legs of lengths no more than 2.

Here is some notation which will be used in
the proof. Let G be a graph. For v € V(G), we
write N (v) for the set of neighbors of v in G,
and N (v) for the set of vertices with distance
from v in G. For S, TSV (G), write E; (S, T)
for the set of edges with one end in S and the other
in T, write G[ S ] be the subgraph induced by S.
We give the proof of Theorem 0. 1 in the next

section. Section 2 will give some remarks and

discussions.
1 Proof of Theorem 0. 1

We first give two useful observations.
Lemma 1.1 Let T be a tree and G be a
graph. Suppose v,, vy, w; €L (T) and v,w €
S(T) such that v,v, v,v, wiyw € E (T). Let
T'=T—wvv, +v,v,. If T can be embedded in G
and there is a perfect matching between {v,, v, }
and {w, w,} in G, then G contains a copy of T as
a subgraph.
Proof
v,} and {w, w;}. UM={v,w, vow;}, then T —

Let M be a matching between {v,,

{vv,» ww,} + {wv,s v,w,} is a subgraph of G
isomorphic to T'. U M={v,w,, v,w/} then T —
{vv,, ww, } + {wv,, v,w,} is a subgraph of G
isomorphic to T'.

Lemma 1.2 Suppose G is a graph. Let X =
{1, 2, SV(G) and Y=U" {y:, 2, ) SV(G). I
|[Eq(X, Y)|>2m, then there exists a pair {y, .
z;} such that there is a perfect matching between
X and {y;, z;} in G.

Proof Since |E; (X, Y)|>2m, there must
be a pair Y;={y,,z;} so that |E;(X, Y,)|=3.
Thus the bipartite subgraph with partitions X, Y,
contains a perfect matching.

Lemma 1, 3"

n(k—2)

If G is a graph on n vertices

with e (G)> , then there is a subgraph H

[V(H) | (k—2)

5 and ¢ (H) =

CG with e (H) >

Now we are ready to give the proof of
Theorem 0. 1.

Proof of Theorem 0.1 By Lemma 1.3, we

k
may assume 5‘(G)>?. By the result of Erdés and

Gallai (see (a)) and the result of Fan, Hong and
Liu (see (b)), it is sufficient to show the theorem
for T with two adjacent vertices of degrees more
than two. Denote by a and b the two centers of T,
respectively. Let Ly (a) =Nz (a) (VL (T) and
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L) = N (b)) N L (T). Without loss of
generality, assume | Ly (a) | =Ly (b)|. Let
L%(a)=N%(a)\N; (h) and L% (b)) = N% (h)\
Nr(a). Let S(L%(a)) =N (a)\(Ly(a)U{b})
and S(LEZ (b)) =N\ () U{a}). Since the
length of each leg of T is at most 2, we have

V((T)=L%) UL USULi@) U

S ULr(a) ULy U lasbt.

We use induction on the number of |L%(a)].
If |L%(a)| =0, then T has diameter at most 4. So
the base case follows from the result of MclLennan
(see (d)). Now suppose | L% (a)|=(=1 and the
result holds for all 2-center spider trees T' with a
center ¢ having | L% (¢) | <</ Suppose to the
contrary that G does not contain T as a subgraph.
Choose s € L% (a). Let T"=T — 2 +z2a. Then
L% (a)=L%(a)\{z} and Ly (a)=Ls(a) U {2,
s(2)}, where s(2) is the support vertex of z in T,
Then | L% (a) | =¢—1. By induction hypothesis,
T’ can be embedded in G.

Claim 1. 1
in G;

(i) Ng(Lp (@) &SV IT).

Proof of the claim 1.1

(i) L4+ (a) is an independent set

(i) Suppose to the
contrary that there are x, y € L (a) such that
xy€ E (G). Without loss of generality, assume
y#z. Then we have T=T'—{ay, az} +xvZ=G,
a contradiction.

(i1) Suppose to the contrary that there is a leaf
€Ly (a) such that = has a neighbor h €V (T").
If =2 then T=T'—5(z)a+zh contained in G,
otherwise T=T ' —za +zh is a subgraph of G, a
contradiction.

Let p=|Ls(a)| and ¢=|L+(b)|. Note that
p=q and |Ly(a)|=p+2and L (b)=L ().

Case 1.1 p=2.

Let x,y be two leaves in L (a). By Claim 1.
1, L+ (a) is an independent set. Let U=L% (a) U
L% (b) and W be the set of support vertices of U in
T’. Then T'[UUW] is a matching in T’. Denote
m=1U/|. We have
m=U|=[W |=

| V(T) [=| Ly (a) |—| Ly () || {a.b} |
2
k—p—qg—4
5 .
By Claim 1. 1Gii), N¢(x)s N (3)SV(T)).
Case 1.1.1 €N NN ().
We claim that y & N () UNg (L1 (b)), If
not, then there must be a leaf 6" € L+ (b) such that

there is a matching M between {z, y} and {b,
6"}. By Lemma 1.1, there is a copy of T'—ax +
xy which can be embedded in G. This is
impossible since T=T " —ax +zy. Since 6 (G)=

k k
o |Eq(x, UUW) |>?—2—q and |E;(y, UU

k
W>|>§—1. So, |[Ec{zsy}s UUW) [ =k —¢—

3> 2m. By Lemma 1. 2, there is a matching
between {z,y} and a pair {u,w} with uw €E(T’
[UUWD. By Lemma 1.1, G contains a copy of
T, a contradiction.

Case 1.1.2 xEN,() butx & Ns (L)),

With a similar reason with Case 1. 1. 1, we

k
have y & N¢ (L+(b)). Since 8((})2?, we have

o | &

|[Eq(x, UUW) | Z=——2and |E;(y, UUW) | =

k
?*2. Therefore, |E;({z.y}, UUW) | =k —4>

2m. By Lemma 1. 2, there is a matching between
{zsy} and a pair {u,w} with uww € E(T'[U U
W1). By Lemma 1.1, G contains a copy of T, a
contradiction.

Case 1.1.3 &N UNG(Lw (b)),
k
Since 8(G)>?, we have |Eq(x, UUW) | =

k k
?*1 and | Eg (y, UUW)‘)E

Therefore, |Ec ({x vy}, UUW) | =k —3—g>
2m. By Lemma 1. 2, there is a matching between
{x,y} and a pair {u,w} with ww €E(T'[UU
W1. By Lemma 1.1, G contains a copy of T, a

— 2 —q.

contradiction.
Case 1.1.4 ¢ N, (b)) but x €ENg(L)).
Let t € Ng (), where 5" €L+ (h). We claim
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that y & N (b). If not, there is a matching M
between {x, y} and {b, b'}.
there is a copy of T=T —ay+by+xb’ which can

By Lemma 1. 1,

k
be embedded in G. Since 6(G)>?, we have | E;
k
(x, UUW)\};*l*q and |Eq(y, UUW) | =

k
?*1*(1. Therefore, |Eq ({x,y}, UUW) | =

k—2— 2q > 2m.
matching between {x,y} and a pair {u,w} with
uw EE(T'[UUW]). By Lemma 1.1, G contains
a copy of T, a contradiction.

Case 1.2 p=1.

Case1.2.1 ¢=0

By Lemma 1. 2, there is a

k
Then |E(,'({l‘9y}9 UUW)|>2 * (?72):

k—4>k —5=2m. By Lemma 1. 2, there is a
matching between {x,y} and a pair {u,w} with
uw €EE(T'TUUW]). We again get a contradiction
by Lemma 1. 1 with the same reason as Case 1. 1. 1.
Case1.2.2 ¢=1
Let L (b)=1{0"}. Set U=UU {s'} and

k_

6
W =WU{b}. Then \U/|:\W/\:m+1:T+

k—4 k
1= ——. Since 5(G)>?

2 ) ‘E(, ({l’ay}a

k
U UwH =2 (?*I)Zk*2>k*4=2(m+1).

By Lemma 1. 2, there is a matching between {z,
vy} and a pair {u,w} with u €U’ and w € W',
Again we get a contradiction by Lemma 1. 1 with
the same reason as Case 1. 1. 1.

Case 1.3 p=q=0.

In this case, we may assume | L% (a) | <<
[L%(b)| by the symmetry of a and & (otherwise,
we may choose x € L5 (b) instead of x € L5 (a)).
Then | L% (a) | <| % J. Without loss of
generality, assume x ==z. Then y is the support
E
2

vertex of x in T. Since 6§ (G) = —, we have

k
|E;(x, UUW)|>E*2 and |[Eq(y, UUW) | =

k
?—2. We claim that |Eg(x, UUW) | =|E;(y,

k
UuUuw) | :?*2. Otherwise, at least one of x,y

k
has neighbors more than 5 2 in UUW, then

k

Similar as Case 1. 1.1, by Lemmas 1.1 and 1. 1,
we get a contradiction. The claim also implies that
x,yE NGB,

Claim 1.2 For every edge e=uw €EE(T'[U
UW ) with u € L% (@), we have either V(e) N
Ne(@)FZ0 or V(e)(NNg(b)FD.

Proof of the claim 1.2 If not, we claim that
uy, wy € E(G). Otherwise, set U =U\{u) and

k—4

W =W\{w}). then\U’\:m—lzT 1=

E—6 ok
T. But ‘E(,’(l’, U UW)‘:?iz Ell'ld ‘E(,‘(y’

U/UW/)\:§*2*1:%*3. So, |Eqcxsy}s
U UW)|[=k—5>2|U"|. Therefore, by Lemmas
1.2 and 1. 1, we can get a contradiction similar as
Case 1.1.1. Now set T"=T —uw+yu. Then T”
=T " and L+ (a)={x.w} but wb & E(G). We
reset U=U and W = (W\{w}) U {y}. Then

4 4 k74 4 4
|U ‘:‘W |:m:T But |E(;(1‘9 U UW)‘Z

k k
?*2 and |E; (w, U/UW/)\EE*I. So, |Eg

Uzywh, UUW) | =k —3>2m. Again by
[Lemmas 1. 2 and 1. 1, we can get a contradiction
similar as Case 1. 1. 1.

Now we claim that we can find a copy of T in
G with centers z and b. Since |E;(xz, UUW) | =
k ;4 , there are at least fk 24

W such that V(e) (I Ngs(2)FZ@. Since | L% (a) | <

] edges e of ECT'[UU

k k—4
LTJ\(T—L we can choose | L% (a) | edges in

E(T'[TUUWD) connected to x (we prefer to choose
the edges with one end in L% (a)). Note that

|L% (@) [ <<|L%Ca) |, for the rest edges with one
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end in L% (a), by Claim 1. 2 and our choice of
edges connected to x, this edge must have one end
adjacent to b, and so it can be seen as an edge of a
leg of length 2 connected to b. For the other edges
of ECT'[UUWTD, each edge has one end in
L%(b), it is still an edge of a leg connected to b.
Moreover, the path yab is also a leg of length 2
connected to b. Clearly, the resulting tree is

isomorphic to T, as desired.

This completes the proof of the theorem.

2 Remarks and Discussions

In the study of the Erd6s-S6s Conjecture, the

spiders have been well studied and verified
completely by Ref. [4] recently, but the first step
to attack the special family is to show the Erdos-
S6s Conjecture holds for spiders with legs of length
at most two ( Wozniak!''!). 1In this note, we
initially study the 2-center spiders, a generalization
of spider, and prove that the Erdos-Soés Conjecture
holds for 2-center spiders with legs of length at
most two. We hope that one can show the Erdos-
S6s  Conjecture holds for 2-spiders with no

restriction on the length of legs in the near future.
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