[1] |
Phua C, Alahakoon D, Lee V. Minority report in fraud detection: classification of skewed data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 50-59.
|
[2] |
Sun A X, Lim E P, Liu Y. On strategies for imbalanced text classification using SVM: A comparative study[J]. Decision Support Systems, 2009, 48(1): 191-201.
|
[3] |
Turney P D. Learning algorithms for key phrase extraction[J]. Information Retrieval, 2000, 2(4): 303-336.
|
[4] |
Burez J, van den Poel D. Handling class imbalance in customer churn prediction[J]. Expert Systems with Applications, 2009, 36(3): 4 626-4 636.
|
[5] |
Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote sensing of environment, 2005, 95(1): 1-13.
|
[6] |
Plant C, Bhm C, Tilg B, et al. Enhancing instance-based classification with local density: a new algorithm for classifying unbalanced biomedical data[J]. Bioinformatics, 2006, 22(8): 981-988.
|
[7] |
Branch J W, Giannella C, Szymanski B, et al. In-network outlier detection in wireless sensor networks[J]. Knowledge and information systems, 2013, 34(1): 23-54.
|
[8] |
Sahbi H, Geman D. A hierarchy of support vector machines for pattern detection[J]. Journal of Machine Learning Research, 2006, 7: 2 087-2 123.
|
[9] |
Blake C, Keogh E, Merz C J. UCI repository of machine learning databases[EB/OL]. http://www.ics.uci.edu/_mlearn/MLRepository.html.
|
[10] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
|
[11] |
Han H, Wang W Y, Mao B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]//Advances in Intelligent Computing. Berlin Heidelberg, Germany: Springer, 2005: 878-887.
|
[12] |
Liu A, Ghosh J, Martin C E. Generative oversampling for mining imbalanced datasets[C]// Proceedings of International Conference on Data Mining. Las Vegas, USA: IEEE Press, 2007: 66-72.
|
[13] |
Batista G E, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29.
|
[14] |
Weiss G M, Provost F J. Learning when training data are costly: The effect of class distribution on tree induction[J]. Journal of Artificial Intelligence Research, 2003, 19: 315-354.
|
[15] |
Domingos P. MetaCost: A general method for making classifiers cost-sensitive[C]// Proceedings of the International Conference on Knowledge Discovery and Data Mining. San Diego, USA: ACM Press, 1999: 155-164.
|
[16] |
Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data[R]. TR666, Statistics Department, University of California at Berkeley, 2004.
|
[17] |
Chew H G, Bogner R E, Lim C C. Dual ν-support vector machine with error rate and training size biasing[C]// Proceedings of the 26th International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, USA: IEEE Press, 2001, 2: 1 269-1 272.
|
[18] |
Raskutti B, Kowalczyk A. Extreme re-balancing for SVMs: A case study[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 60-69.
|
[19] |
Juszczak P, Duin R P W. Uncertainty sampling methods for one-class classifiers[C]// Proceedings of International Conference on Machine Learning. Washington, USA: IEEE Press, 2003: 81-88.
|
[20] |
Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 63-77.
|
[21] |
Liu X Y, Wu J X, Zhou Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(2): 539-550.
|
[22] |
Galar M, Fernandez A, Barrenechea E, et al. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(4): 463-484.
|
[23] |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. London, IEEE Press, 2001, 1: I-511-518.
|
[24] |
Liu X Y, Li Q Q, Zhou Z H. Learning imbalanced multi-class data with optimal dichotomy weights[C]// IEEE 13th International Conference on Data Mining. Omaha, USA: IEEE Press, 2013: 478-487.
|
[25] |
Drummond C, Holte R C. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling[EB/OL]. http://www.site.uottawa.ca/~nat/Workshop2003/drummondc.pdf.
|
[1] |
Phua C, Alahakoon D, Lee V. Minority report in fraud detection: classification of skewed data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 50-59.
|
[2] |
Sun A X, Lim E P, Liu Y. On strategies for imbalanced text classification using SVM: A comparative study[J]. Decision Support Systems, 2009, 48(1): 191-201.
|
[3] |
Turney P D. Learning algorithms for key phrase extraction[J]. Information Retrieval, 2000, 2(4): 303-336.
|
[4] |
Burez J, van den Poel D. Handling class imbalance in customer churn prediction[J]. Expert Systems with Applications, 2009, 36(3): 4 626-4 636.
|
[5] |
Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote sensing of environment, 2005, 95(1): 1-13.
|
[6] |
Plant C, Bhm C, Tilg B, et al. Enhancing instance-based classification with local density: a new algorithm for classifying unbalanced biomedical data[J]. Bioinformatics, 2006, 22(8): 981-988.
|
[7] |
Branch J W, Giannella C, Szymanski B, et al. In-network outlier detection in wireless sensor networks[J]. Knowledge and information systems, 2013, 34(1): 23-54.
|
[8] |
Sahbi H, Geman D. A hierarchy of support vector machines for pattern detection[J]. Journal of Machine Learning Research, 2006, 7: 2 087-2 123.
|
[9] |
Blake C, Keogh E, Merz C J. UCI repository of machine learning databases[EB/OL]. http://www.ics.uci.edu/_mlearn/MLRepository.html.
|
[10] |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
|
[11] |
Han H, Wang W Y, Mao B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]//Advances in Intelligent Computing. Berlin Heidelberg, Germany: Springer, 2005: 878-887.
|
[12] |
Liu A, Ghosh J, Martin C E. Generative oversampling for mining imbalanced datasets[C]// Proceedings of International Conference on Data Mining. Las Vegas, USA: IEEE Press, 2007: 66-72.
|
[13] |
Batista G E, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29.
|
[14] |
Weiss G M, Provost F J. Learning when training data are costly: The effect of class distribution on tree induction[J]. Journal of Artificial Intelligence Research, 2003, 19: 315-354.
|
[15] |
Domingos P. MetaCost: A general method for making classifiers cost-sensitive[C]// Proceedings of the International Conference on Knowledge Discovery and Data Mining. San Diego, USA: ACM Press, 1999: 155-164.
|
[16] |
Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data[R]. TR666, Statistics Department, University of California at Berkeley, 2004.
|
[17] |
Chew H G, Bogner R E, Lim C C. Dual ν-support vector machine with error rate and training size biasing[C]// Proceedings of the 26th International Conference on Acoustics, Speech and Signal Processing. Salt Lake City, USA: IEEE Press, 2001, 2: 1 269-1 272.
|
[18] |
Raskutti B, Kowalczyk A. Extreme re-balancing for SVMs: A case study[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 60-69.
|
[19] |
Juszczak P, Duin R P W. Uncertainty sampling methods for one-class classifiers[C]// Proceedings of International Conference on Machine Learning. Washington, USA: IEEE Press, 2003: 81-88.
|
[20] |
Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 63-77.
|
[21] |
Liu X Y, Wu J X, Zhou Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(2): 539-550.
|
[22] |
Galar M, Fernandez A, Barrenechea E, et al. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(4): 463-484.
|
[23] |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. London, IEEE Press, 2001, 1: I-511-518.
|
[24] |
Liu X Y, Li Q Q, Zhou Z H. Learning imbalanced multi-class data with optimal dichotomy weights[C]// IEEE 13th International Conference on Data Mining. Omaha, USA: IEEE Press, 2013: 478-487.
|
[25] |
Drummond C, Holte R C. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling[EB/OL]. http://www.site.uottawa.ca/~nat/Workshop2003/drummondc.pdf.
|