Figures of the Article
-
(a) Schematic of the typical synthesis of the carbon tube. (b,c) TEM images of the Te@C fiber (Te NWs coated with a uniform carbon shell) at different magnifications. The inset of (c) shows a HRTEM image of the inner Te NW. (d–f) Maps of the Te@C nanocable. (g) Corresponding selected-area electron diffraction pattern of a Te@C nanowire cable.
-
Morphology control of the tubular carbon aerogel.
(a–d) TEM images of Te NWs with different diameters of 10, 20, 40, 80 nm, respectively. (e,f) TEM images of the Te@C fibers obtained with Te NWs with different diameters as templates. (i–l) TEM images of the carbon nanotubes with different pipe diameters and wall thicknesses obtained using the Te@C precursor (e,f) by a high-temperature annealing. -
Electrochemical performances measured in a two-electrode system. Cyclic voltammograms of the carbon nanotube-10, carbon nanotube-20, carbon nanotube-40, and carbon nanotube-80 at scan rates of (a) 50 mV∙s−1 and (b) 100 mV∙s−1. (c) Galvanostatic charge–discharge curves at 1 A∙g−1. (d) Volumetric capacitances at different current densities.
-
(a) SEM image of the carbon nanotube-40. (b) SEM image of the MnO2@carbon nanotube-40. (c) TEM image of the MnO2@carbon nanotube-40. (d) TEM image of the MnO2@carbon nanotube-40 at a high magnification.
-
Electrochemical performances measured in a two-electrode system. Cyclic voltammograms of the MnO2@carbon nanotube-40 at scan rates of 50 and 100 mV∙s −1. (b) Galvanostatic charge–discharge curves of the MnO2@carbon nanotube-40 at different current densities. (c) Volumetric capacitances of the MnO2@ carbon nanotube-40 and carbon nanotube-x (x = 10, 20, 40, 80) at different current densities. (d) Triangular shapes of the first and 2000th cycles.