ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 15 July 2024

An efficient strategy for the preparation of a MIL-53(Al)-NH2 membranes with high ion selectivity and desalination performance

Cite this:
https://doi.org/10.52396/JUSTC-2024-0016
More Information
  • Author Bio:

    Wenmin Li is currently a master’s student at the School of Chemistry and Materials Science, University of Science and Technology of China, under the supervision of Prof. Tongwen Xu. Her research mainly focuses on metal-organic framework membranes for ion separation

    Tingting Xu is currently an Associate Research Fellow at the University of Science and Technology of China (USTC). She received her Ph.D. degree from USTC in 2020. Her research interests include the fabrication of advanced porous material membranes and their separation mechanism

    Tongwen Xu is currently a Professor at the University of Science and Technology of China. He received his Ph.D. degree from Tianjin University in 1995. His research interests cover membranes and related processes, particularly ion exchange membranes and membranes for energy and environmental applications

  • Corresponding author: E-mail: xutt49@ustc.edu.cn; E-mail: twxu@ustc.edu.cn
  • Received Date: 02 February 2024
  • Accepted Date: 22 March 2024
  • Available Online: 15 July 2024
  • The efficient extraction of sodium (Na+) and lithium (Li+) from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries. However, coexisting cations such as divalent calcium (Ca2+) and magnesium (Mg2+) ions are at the subnanometer scale in diameter, similar to target monovalent ions, making ion separation a great challenge. Here, we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH2 membranes on the surface of anodic aluminum oxide. Such membranes contain angstrom-scale (~7 Å) channels for the entrance of small monovalent ions and water molecules, endowing the selectivities for monovalent cations over divalent cations and water over salt molecules. The resulting high-connectivity MIL-53(Al)-NH2 membranes exhibit excellent ion separation performance (a selectivity of 121.42 for Na+/Ca2+ and 93.81 for Li+/Mg2+) and desalination performance (a water/salt selectivity of up to 5196). This work highlights metal-organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.
    MIL-53(Al)-NH2 membranes fabricated via a secondary growth strategy exhibit high ion selectivity and desalination performance.
    The efficient extraction of sodium (Na+) and lithium (Li+) from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries. However, coexisting cations such as divalent calcium (Ca2+) and magnesium (Mg2+) ions are at the subnanometer scale in diameter, similar to target monovalent ions, making ion separation a great challenge. Here, we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH2 membranes on the surface of anodic aluminum oxide. Such membranes contain angstrom-scale (~7 Å) channels for the entrance of small monovalent ions and water molecules, endowing the selectivities for monovalent cations over divalent cations and water over salt molecules. The resulting high-connectivity MIL-53(Al)-NH2 membranes exhibit excellent ion separation performance (a selectivity of 121.42 for Na+/Ca2+ and 93.81 for Li+/Mg2+) and desalination performance (a water/salt selectivity of up to 5196). This work highlights metal-organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.
    • The MIL-53(Al)-NH2 membranes were successfully prepared within a short time by a secondary growth strategy.
    • The fabricated membranes containing angstrom-scale (~7 Å) channels provide transport pathways for small monovalent ions and water molecules but hinder divalent cations.
    • The MIL-53(Al)-NH2 membranes exhibit excellent ion separation performance (a selectivity of 121.42 for Na+/Ca2+ and 93.81 for Li+/Mg2+) and desalination performance (a water/salt selectivity of up to 5196).

  • loading
  • [1]
    Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. : Water Res. Technol., 2017, 3 (4): 593–597. doi: 10.1039/C7EW00020K
    [2]
    Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy. Mater., 2018, 8 (17): 1703137. doi: 10.1002/aenm.201703137
    [3]
    Liu Z X, Huang Y, Huang Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev., 2020, 49 (1): 180–232. doi: 10.1039/C9CS00131J
    [4]
    Li J L, Fleetwood J, Hawley W B, et al. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev., 2022, 122 (1): 903–956. doi: 10.1021/acs.chemrev.1c00565
    [5]
    Nightingale Jr E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem., 1959, 63 (9): 1381–1387. doi: 10.1021/j150579a011
    [6]
    Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol., 2006, 51 (1): 40–47. doi: 10.1016/j.seppur.2005.12.020
    [7]
    Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed., 2016, 55 (48): 15120–15124. doi: 10.1002/anie.201607329
    [8]
    Lu J, Zhang H C, Hou J, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater., 2020, 19 (7): 767–774. doi: 10.1038/s41563-020-0634-7
    [9]
    Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Eng. Chem., 2020, 81: 7–23. doi: 10.1016/j.jiec.2019.09.002
    [10]
    Peng H W, Zhao Q. A Nano-Heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine. Adv. Funct. Mater., 2021, 31 (14): 2009430. doi: 10.1002/adfm.202009430
    [11]
    Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol., 2021, 256: 117807. doi: 10.1016/j.seppur.2020.117807
    [12]
    Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol., 2017, 12 (6): 546–550. doi: 10.1038/nnano.2017.21
    [13]
    Dou H Z, Xu M, Wang B Y, et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev., 2021, 50 (2): 986–1029. doi: 10.1039/D0CS00552E
    [14]
    Kang J, Ko Y, Kim J P, et al. Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration. Nat. Commun., 2023, 14 (1): 901. doi: 10.1038/s41467-023-36524-x
    [15]
    O’Hern S C, Boutilier M S H, Idrobo J C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett., 2014, 14 (3): 1234–1241. doi: 10.1021/nl404118f
    [16]
    Ayyaru S, Ahn Y H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Membr. Sci., 2017, 525: 210–219. doi: 10.1016/j.memsci.2016.10.048
    [17]
    Wang M D, Zhang P H, Liang X, et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain., 2022, 5 (6): 518–526. doi: 10.1038/s41893-022-00870-3
    [18]
    Cassady H J, Cimino E C, Kumar M, et al. Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange membranes. J. Membr. Sci., 2016, 508: 146–152. doi: 10.1016/j.memsci.2016.02.048
    [19]
    Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev., 2020, 120 (16): 8814–8933. doi: 10.1021/acs.chemrev.9b00550
    [20]
    Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550 (7676): 380–383. doi: 10.1038/nature24044
    [21]
    Zhang H C, Hou J, Hu Y X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv., 2018, 4 (2): eaaq0066. doi: 10.1126/sciadv.aaq0066
    [22]
    Hou J, Zhang H C, Simon G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv. Mater., 2020, 32 (18): 1902009. doi: 10.1002/adma.201902009
    [23]
    Ran J, Wu L, He Y B, et al. Ion exchange membranes: New developments and applications. J. Membr. Sci., 2017, 522: 267–291. doi: 10.1016/j.memsci.2016.09.033
    [24]
    Zhao D L, Japip S, Zhang Y, et al. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res., 2020, 173: 115557. doi: 10.1016/j.watres.2020.115557
    [25]
    Yadav D, Karki S, Ingole P G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng., 2022, 10 (4): 108109. doi: 10.1016/j.jece.2022.108109
    [26]
    Denny Jr M S, Moreton J C, Benz L, et al. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater., 2016, 1: 16078. doi: 10.1038/natrevmats.2016.78
    [27]
    Zhao X, Wang Y X, Li D S, et al. Metal–organic frameworks for separation. Adv. Mater., 2018, 30 (37): 1705189 doi: 10.1002/adma.201705189
    [28]
    Yu S J, Pang H W, Huang S Y, et al. Recent advances in metal–organic framework membranes for water treatment: A review. Sci. Total. Environ., 2021, 800: 149662. doi: 10.1016/j.scitotenv.2021.149662
    [29]
    Liu Y C, Yeh L H, Zheng M J, et al. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv., 2021, 7 (10): eabe9924. doi: 10.1126/sciadv.abe9924
    [30]
    Li X Y, Zhang H C, Yu H, et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater., 2020, 32 (24): 2001777. doi: 10.1002/adma.202001777
    [31]
    Li X Y, Zhang H C, Wang P Y, et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun., 2019, 10: 2490. doi: 10.1038/s41467-019-10420-9
    [32]
    Qian T Y, Zhang H C, Li X Y, et al. Efficient gating of ion transport in three-dimensional metal–organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem. Int. Ed., 2020, 59 (31): 13051–13056. doi: 10.1002/anie.202004657
    [33]
    Jian M P, Qiu R S, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv., 2020, 6 (23): eaay3998. doi: 10.1126/sciadv.aay3998
    [34]
    Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal–organic framework membranes with leaf-like morphology. ChemSusChem, 2019, 12 (12): 2593–2597. doi: 10.1002/cssc.201900706
    [35]
    Tran T V, Jalil A A, Nguyen D T C, et al. A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. Environ. Res., 2023, 216: 114422. doi: 10.1016/j.envres.2022.114422
    [36]
    Zeng F M, Yang Y H, Li X H, et al. Ionic sieving at sub-angstrom precision enabled by metal organic frameworks. ACS Appl. Mater. Interfaces, 2023, 15 (34): 40839–40845. doi: 10.1021/acsami.3c07914
    [37]
    Li H Z, Qiu C L, Ren S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science, 2020, 367 (6478): 667–671. doi: 10.1126/science.aaz6053
    [38]
    Sorribas S, Gorgojo P, Téllez C, et al. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc., 2013, 135 (40): 15201–15208. doi: 10.1021/ja407665w
    [39]
    Lu X Y, Geng Y Z, Jia Z Q, et al. In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation. Sep. Purif. Technol., 2021, 269: 118760. doi: 10.1016/j.seppur.2021.118760
    [40]
    Chin J M, Chen E Y, Menon A G, et al. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm, 2013, 15 (4): 654–657. doi: 10.1039/C2CE26586A
    [41]
    Deng M M, Kwac K, Li M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett., 2017, 17 (4): 2342–2348. doi: 10.1021/acs.nanolett.6b05238
    [42]
    Hirunpinyopas W, Prestat E, Worrall S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano, 2017, 11 (11): 11082–11090. doi: 10.1021/acsnano.7b05124
    [43]
    Lu Z, Wei Y Y, Deng J J, et al. Self-crosslinked MXene (Ti3C2T x) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13 (9): 10535–10544. doi: 10.1021/acsnano.9b04612
  • 加载中

Catalog

    Figure  1.  Scheme of the fabrication of MIL-53(Al)-NH2 membranes via the secondary growth method.

    Figure  2.  SEM images of the AAO substrate and MIL-53(Al)-NH2 membranes. SEM images of the surfaces of the AAO substrate (a), MIL-53-NH2-M-S (b), MIL-53-NH2-M-1 (c), and MIL-53-NH2-M-2 (d) at low magnification. High-magnification SEM images of the surfaces of the AAO substrate (e), MIL-53-NH2-M-S (f), MIL-53-NH2-M-1 (g), and MIL-53-NH2-M-2 (h). SEM cross-sectional images of the AAO substrate (i), MIL-53-NH2-M-S (j), MIL-53-NH2-M-1 (k), and MIL-53-NH2-M-2 (l).

    Figure  3.  FTIR spectra and XRD patterns of AAO and MIL-53(Al)-NH2. (a) Fourier transform infrared (FTIR) spectra of the AAO and MIL-53(Al)-NH2 membranes. (b) XRD patterns of the AAO substrate and MIL-53(Al)-NH2 membranes. (c) XRD patterns of MIL-53(Al)-NH2 powders.

    Figure  4.  Ion separation performance of MIL-53(Al)-NH2 membranes. (a) The homemade U-cell device for the tests of ion separation performance. (b) The ion permeation rate and selectivity of the AAO substrate. (c) The ion permeation rates of MIL-53(Al)-NH2 membranes. (d) The selectivities for Na+/Ca2+ and Li+/Mg2+ of MIL-53(Al)-NH2 membranes.

    Figure  5.  Desalination performance of MIL-53(Al)-NH2 membranes. (a) The homemade U-cell device for the tests of desalination performance. (b) The flux and selectivity of the AAO substrate and MIL-53(Al)-NH2 membranes. (c) Comparison of MIL-53-NH2-M-2 membranes with state-of-the-art membranes reported for water/NaCl separation in terms of permeance versus selectivity.

    [1]
    Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. : Water Res. Technol., 2017, 3 (4): 593–597. doi: 10.1039/C7EW00020K
    [2]
    Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy. Mater., 2018, 8 (17): 1703137. doi: 10.1002/aenm.201703137
    [3]
    Liu Z X, Huang Y, Huang Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev., 2020, 49 (1): 180–232. doi: 10.1039/C9CS00131J
    [4]
    Li J L, Fleetwood J, Hawley W B, et al. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev., 2022, 122 (1): 903–956. doi: 10.1021/acs.chemrev.1c00565
    [5]
    Nightingale Jr E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem., 1959, 63 (9): 1381–1387. doi: 10.1021/j150579a011
    [6]
    Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol., 2006, 51 (1): 40–47. doi: 10.1016/j.seppur.2005.12.020
    [7]
    Guo Y, Ying Y L, Mao Y Y, et al. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed., 2016, 55 (48): 15120–15124. doi: 10.1002/anie.201607329
    [8]
    Lu J, Zhang H C, Hou J, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater., 2020, 19 (7): 767–774. doi: 10.1038/s41563-020-0634-7
    [9]
    Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Eng. Chem., 2020, 81: 7–23. doi: 10.1016/j.jiec.2019.09.002
    [10]
    Peng H W, Zhao Q. A Nano-Heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine. Adv. Funct. Mater., 2021, 31 (14): 2009430. doi: 10.1002/adfm.202009430
    [11]
    Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol., 2021, 256: 117807. doi: 10.1016/j.seppur.2020.117807
    [12]
    Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol., 2017, 12 (6): 546–550. doi: 10.1038/nnano.2017.21
    [13]
    Dou H Z, Xu M, Wang B Y, et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev., 2021, 50 (2): 986–1029. doi: 10.1039/D0CS00552E
    [14]
    Kang J, Ko Y, Kim J P, et al. Microwave-assisted design of nanoporous graphene membrane for ultrafast and switchable organic solvent nanofiltration. Nat. Commun., 2023, 14 (1): 901. doi: 10.1038/s41467-023-36524-x
    [15]
    O’Hern S C, Boutilier M S H, Idrobo J C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett., 2014, 14 (3): 1234–1241. doi: 10.1021/nl404118f
    [16]
    Ayyaru S, Ahn Y H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J. Membr. Sci., 2017, 525: 210–219. doi: 10.1016/j.memsci.2016.10.048
    [17]
    Wang M D, Zhang P H, Liang X, et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain., 2022, 5 (6): 518–526. doi: 10.1038/s41893-022-00870-3
    [18]
    Cassady H J, Cimino E C, Kumar M, et al. Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange membranes. J. Membr. Sci., 2016, 508: 146–152. doi: 10.1016/j.memsci.2016.02.048
    [19]
    Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev., 2020, 120 (16): 8814–8933. doi: 10.1021/acs.chemrev.9b00550
    [20]
    Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550 (7676): 380–383. doi: 10.1038/nature24044
    [21]
    Zhang H C, Hou J, Hu Y X, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv., 2018, 4 (2): eaaq0066. doi: 10.1126/sciadv.aaq0066
    [22]
    Hou J, Zhang H C, Simon G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Adv. Mater., 2020, 32 (18): 1902009. doi: 10.1002/adma.201902009
    [23]
    Ran J, Wu L, He Y B, et al. Ion exchange membranes: New developments and applications. J. Membr. Sci., 2017, 522: 267–291. doi: 10.1016/j.memsci.2016.09.033
    [24]
    Zhao D L, Japip S, Zhang Y, et al. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res., 2020, 173: 115557. doi: 10.1016/j.watres.2020.115557
    [25]
    Yadav D, Karki S, Ingole P G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng., 2022, 10 (4): 108109. doi: 10.1016/j.jece.2022.108109
    [26]
    Denny Jr M S, Moreton J C, Benz L, et al. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater., 2016, 1: 16078. doi: 10.1038/natrevmats.2016.78
    [27]
    Zhao X, Wang Y X, Li D S, et al. Metal–organic frameworks for separation. Adv. Mater., 2018, 30 (37): 1705189 doi: 10.1002/adma.201705189
    [28]
    Yu S J, Pang H W, Huang S Y, et al. Recent advances in metal–organic framework membranes for water treatment: A review. Sci. Total. Environ., 2021, 800: 149662. doi: 10.1016/j.scitotenv.2021.149662
    [29]
    Liu Y C, Yeh L H, Zheng M J, et al. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv., 2021, 7 (10): eabe9924. doi: 10.1126/sciadv.abe9924
    [30]
    Li X Y, Zhang H C, Yu H, et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater., 2020, 32 (24): 2001777. doi: 10.1002/adma.202001777
    [31]
    Li X Y, Zhang H C, Wang P Y, et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun., 2019, 10: 2490. doi: 10.1038/s41467-019-10420-9
    [32]
    Qian T Y, Zhang H C, Li X Y, et al. Efficient gating of ion transport in three-dimensional metal–organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem. Int. Ed., 2020, 59 (31): 13051–13056. doi: 10.1002/anie.202004657
    [33]
    Jian M P, Qiu R S, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv., 2020, 6 (23): eaay3998. doi: 10.1126/sciadv.aay3998
    [34]
    Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal–organic framework membranes with leaf-like morphology. ChemSusChem, 2019, 12 (12): 2593–2597. doi: 10.1002/cssc.201900706
    [35]
    Tran T V, Jalil A A, Nguyen D T C, et al. A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. Environ. Res., 2023, 216: 114422. doi: 10.1016/j.envres.2022.114422
    [36]
    Zeng F M, Yang Y H, Li X H, et al. Ionic sieving at sub-angstrom precision enabled by metal organic frameworks. ACS Appl. Mater. Interfaces, 2023, 15 (34): 40839–40845. doi: 10.1021/acsami.3c07914
    [37]
    Li H Z, Qiu C L, Ren S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science, 2020, 367 (6478): 667–671. doi: 10.1126/science.aaz6053
    [38]
    Sorribas S, Gorgojo P, Téllez C, et al. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc., 2013, 135 (40): 15201–15208. doi: 10.1021/ja407665w
    [39]
    Lu X Y, Geng Y Z, Jia Z Q, et al. In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation. Sep. Purif. Technol., 2021, 269: 118760. doi: 10.1016/j.seppur.2021.118760
    [40]
    Chin J M, Chen E Y, Menon A G, et al. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm, 2013, 15 (4): 654–657. doi: 10.1039/C2CE26586A
    [41]
    Deng M M, Kwac K, Li M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett., 2017, 17 (4): 2342–2348. doi: 10.1021/acs.nanolett.6b05238
    [42]
    Hirunpinyopas W, Prestat E, Worrall S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano, 2017, 11 (11): 11082–11090. doi: 10.1021/acsnano.7b05124
    [43]
    Lu Z, Wei Y Y, Deng J J, et al. Self-crosslinked MXene (Ti3C2T x) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13 (9): 10535–10544. doi: 10.1021/acsnano.9b04612

    Article Metrics

    Article views (12) PDF downloads(16)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return