High-fidelity quantum operation of qubits plays an important role in magnetometry based on nitrogen-vacancy (NV) centers in diamonds. However, the nontrivial spin-spin coupling of the NV center decreases signal contrast and sensitivity. Here, we overcome this limitation by exploiting the amplitude modulation of microwaves, which allows us to perfectly detect magnetic signals at low fields. Compared with the traditional double-quantum sensing protocol, the full contrast of the detection signal was recovered, and the sensitivity was enhanced three times in the experiment. Our method is applicable to a wide range of sensing tasks, such as temperature, strain, and electric field.
High-fidelity quantum operation of qubits plays an important role in magnetometry based on nitrogen-vacancy (NV) centers in diamonds. However, the nontrivial spin-spin coupling of the NV center decreases signal contrast and sensitivity. Here, we overcome this limitation by exploiting the amplitude modulation of microwaves, which allows us to perfectly detect magnetic signals at low fields. Compared with the traditional double-quantum sensing protocol, the full contrast of the detection signal was recovered, and the sensitivity was enhanced three times in the experiment. Our method is applicable to a wide range of sensing tasks, such as temperature, strain, and electric field.
[1] |
Degen C L, Reinhard F, Cappellaro P. Quantum sensing. Rev. Mod. Phys., 2017, 89: 035002. doi: 10.1103/RevModPhys.89.035002
|
[2] |
Barry J F, Schloss J M, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 2020, 92: 015004. doi: 10.1103/RevModPhys.92.015004
|
[3] |
Chen X, Zou C, Gong Z, et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl., 2015, 4: e230. doi: 10.1038/lsa.2015.3
|
[4] |
Chen X D, Wang E H, Shan L K, et al. Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction. Nat. Commun., 2021, 12: 6389. doi: 10.1038/s41467-021-26662-5
|
[5] |
Dong Y, Du B, Zhang S C, et al. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta. Phys. Sin., 2018, 67: 160301. doi: 10.7498/aps.67.20180788
|
[6] |
Fang K, Acosta V M, Santori C, et al. High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. Phys. Rev. Lett., 2013, 110: 130802. doi: 10.1103/PhysRevLett.110.130802
|
[7] |
Mamin H J, Sherwood M H, Kim M, et al. Multipulse double-quantum magnetometry with near-surface nitrogen-vacancy centers. Phys. Rev. Lett., 2014, 113: 030803. doi: 10.1103/PhysRevLett.113.030803
|
[8] |
Bauch E, Hart C A, Schloss J M, et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X, 2018, 8: 031025. doi: 10.1103/PhysRevX.8.031025
|
[9] |
Maze J R, Stanwix P L, Hodges J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455: 644–647. doi: 10.1038/nature07279
|
[10] |
Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455: 648–651. doi: 10.1038/nature07278
|
[11] |
Dong Y, Zheng Y, Li S, et al. Non-Markovianity-assisted high-fidelity Deutsch–Jozsa algorithm in diamond. npj Quantum Inf., 2018, 4: 3. doi: 10.1038/s41534-017-0053-z
|
[12] |
Dong Y, Zhang S C, Lin H B, et al. Quantifying the performance of multi-pulse quantum sensing. Phys. Rev. B, 2021, 103: 104104. doi: 10.1103/PhysRevB.103.104104
|
[13] |
Li C H, Dong Y, Xu J Y, et al. Enhancing the sensitivity of a single electron spin sensor by multi-frequency control. Appl. Phys. Lett., 2018, 113: 072401. doi: 10.1063/1.5042796
|
[14] |
Kong F, Zhao P J, Ye X Y, et al. Nanoscale zero-field electron spin resonance spectroscopy. Nat. Commun., 2018, 9: 1563. doi: 10.1038/s41467-018-03969-4
|
[15] |
Jiang M, Frutos R P, Wu T, et al. Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance. Phys. Rev. Appl., 2019, 11: 024005. doi: 10.1103/PhysRevApplied.11.024005
|
[16] |
Xu N Y, Tian Y, Chen B, et al. Dynamically polarizing spin register of N-V centers in diamond using chopped laser pulses. Phys. Rev. Appl., 2019, 12: 024055. doi: 10.1103/PhysRevApplied.12.024055
|
[17] |
Zhao B W, Dong Y, Zhang S C, et al. Improving the NV generation efficiency by electron irradiation. Chin. Opt. Lett., 2020, 18: 080201. doi: 10.3788/COL202018.080201
|
[18] |
Dong Y, Zhang S C, Zheng Y, et al. Experimental implementation of universal holonomic quantum computation on solid-state spins with optimal control. Phys. Rev. Appl., 2021, 16: 024060. doi: 10.1103/PhysRevApplied.16.024060
|
[19] |
Cerrillo J, Casado S O, Prior J. Low field nano-NMR via three-level system control. Phys. Rev. Lett., 2021, 126: 220402. doi: 10.1103/PhysRevLett.126.220402
|
[20] |
Dong Y, Chen X D, Guo G C, et al. Reviving the precision of multiple entangled probes in an open system by simple π-pulse sequences. Phys. Rev. A, 2016, 94: 052322. doi: 10.1103/PhysRevA.94.052322
|
[21] |
Dong Y, Xu J Y, Zhang S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry. Funct. Diamond, 2021, 1: 125–134. doi: 10.1080/26941112.2021.1898792
|
Figure
1.
Coherent operation of a single NV center in diamond. (a) Pulsed ODMR spectrum of a single
Figure
2.
Rabi oscillation with shaped MW pulse. (a) MW sequence scheme of amplitude modulation. The gray region denotes carrier frequency (
Figure
3.
Ramsey sensing results. (a) Pulse sequence for the Ramsey sensing protocol. A DC magnetic field is applied along the NV center axis. (b–c) Ramsey fringes of the NV center driven with or without amplitude modulation of MW pulse. Here, the MW pulse addresses the target transition
Figure
4.
DQ Ramsey sensing protocol and results. (a) Pulse sequence for the DQ Ramsey sensing protocol. Compared with the SQ Ramsey sequence, the
[1] |
Degen C L, Reinhard F, Cappellaro P. Quantum sensing. Rev. Mod. Phys., 2017, 89: 035002. doi: 10.1103/RevModPhys.89.035002
|
[2] |
Barry J F, Schloss J M, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 2020, 92: 015004. doi: 10.1103/RevModPhys.92.015004
|
[3] |
Chen X, Zou C, Gong Z, et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl., 2015, 4: e230. doi: 10.1038/lsa.2015.3
|
[4] |
Chen X D, Wang E H, Shan L K, et al. Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction. Nat. Commun., 2021, 12: 6389. doi: 10.1038/s41467-021-26662-5
|
[5] |
Dong Y, Du B, Zhang S C, et al. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta. Phys. Sin., 2018, 67: 160301. doi: 10.7498/aps.67.20180788
|
[6] |
Fang K, Acosta V M, Santori C, et al. High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. Phys. Rev. Lett., 2013, 110: 130802. doi: 10.1103/PhysRevLett.110.130802
|
[7] |
Mamin H J, Sherwood M H, Kim M, et al. Multipulse double-quantum magnetometry with near-surface nitrogen-vacancy centers. Phys. Rev. Lett., 2014, 113: 030803. doi: 10.1103/PhysRevLett.113.030803
|
[8] |
Bauch E, Hart C A, Schloss J M, et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X, 2018, 8: 031025. doi: 10.1103/PhysRevX.8.031025
|
[9] |
Maze J R, Stanwix P L, Hodges J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455: 644–647. doi: 10.1038/nature07279
|
[10] |
Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455: 648–651. doi: 10.1038/nature07278
|
[11] |
Dong Y, Zheng Y, Li S, et al. Non-Markovianity-assisted high-fidelity Deutsch–Jozsa algorithm in diamond. npj Quantum Inf., 2018, 4: 3. doi: 10.1038/s41534-017-0053-z
|
[12] |
Dong Y, Zhang S C, Lin H B, et al. Quantifying the performance of multi-pulse quantum sensing. Phys. Rev. B, 2021, 103: 104104. doi: 10.1103/PhysRevB.103.104104
|
[13] |
Li C H, Dong Y, Xu J Y, et al. Enhancing the sensitivity of a single electron spin sensor by multi-frequency control. Appl. Phys. Lett., 2018, 113: 072401. doi: 10.1063/1.5042796
|
[14] |
Kong F, Zhao P J, Ye X Y, et al. Nanoscale zero-field electron spin resonance spectroscopy. Nat. Commun., 2018, 9: 1563. doi: 10.1038/s41467-018-03969-4
|
[15] |
Jiang M, Frutos R P, Wu T, et al. Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance. Phys. Rev. Appl., 2019, 11: 024005. doi: 10.1103/PhysRevApplied.11.024005
|
[16] |
Xu N Y, Tian Y, Chen B, et al. Dynamically polarizing spin register of N-V centers in diamond using chopped laser pulses. Phys. Rev. Appl., 2019, 12: 024055. doi: 10.1103/PhysRevApplied.12.024055
|
[17] |
Zhao B W, Dong Y, Zhang S C, et al. Improving the NV generation efficiency by electron irradiation. Chin. Opt. Lett., 2020, 18: 080201. doi: 10.3788/COL202018.080201
|
[18] |
Dong Y, Zhang S C, Zheng Y, et al. Experimental implementation of universal holonomic quantum computation on solid-state spins with optimal control. Phys. Rev. Appl., 2021, 16: 024060. doi: 10.1103/PhysRevApplied.16.024060
|
[19] |
Cerrillo J, Casado S O, Prior J. Low field nano-NMR via three-level system control. Phys. Rev. Lett., 2021, 126: 220402. doi: 10.1103/PhysRevLett.126.220402
|
[20] |
Dong Y, Chen X D, Guo G C, et al. Reviving the precision of multiple entangled probes in an open system by simple π-pulse sequences. Phys. Rev. A, 2016, 94: 052322. doi: 10.1103/PhysRevA.94.052322
|
[21] |
Dong Y, Xu J Y, Zhang S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry. Funct. Diamond, 2021, 1: 125–134. doi: 10.1080/26941112.2021.1898792
|