[1] |
BROGAARD J A. High frequency trading and its impact on market quality[R]. Evanston, IL: Northwestern University, 2010.
|
[2] |
ALDRIDGE I. High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems[M]. Hoboken, NJ: Wiley, 2010.
|
[3] |
MARTINEZ V H, ROSU I. High Frequency Traders, News and Volatility[C]// AFA 2013 San Diego Meetings Paper. Aldan, PA: American Finance Association, 2013.
|
[4] |
BROGAARD J, HENDERSHOTT T, RIORDANR. High frequency trading and price discovery[J]. The Review of Financial Studies, 2014, 27(8): 2267-2306.
|
[5] |
ANGEL J, MCCABE D. Fairness in financial markets: The case of high frequency trading[J]. Journal of Business Ethics, 2013, 112: 585-595.
|
[6] |
HINTON G E, OSINDERO S, TEH Y W.A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18: 1527-1554.
|
[7] |
毛勇华, 桂小林, 李前,等. 深度学习应用技术研究[J]. 计算机应用研究, 2016, 33(11): 3201-3205.
MAO Yonghua, GUI Xiaoling, LI Qian, et al. Study on application technology of deep learning[J]. Application Research of Computers, 2016, 33(11): 3201-3205. |
[8] |
LECUN Y, BENGIO Y, HINTON GE. Deep learning[J]. Nature, 2015, 521(7553): 436.
|
[9] |
CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32: 333-338.
|
[10] |
TAIGMAN Y, YANG M, RANZATO M, et al. DeepFace: closing the gap to human-level performance in face verification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 1939-1946.
|
[11] |
JI S, XU W, YANG M,et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231.
|
[12] |
KARPATHY A, TODERICI G, SHETTY S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2013: 3626-3633.
|
[13] |
HADSELL R, SERMANET P, BEN J, et al. Learning long-range vision for autonomous off-road driving[J]. Journal of Field Robotics, 2009, 26(2): 120-144.
|
[14] |
COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537.
|
[15] |
BAHDANAU D, CHO K, BENGIOY. Neural machine translation by jointly learning to align and translate[EB/OL]. [2016-5-19]. https://arxiv.org/abs/1409.0473.
|
[16] |
WU Y, SCHUSTER M, CHENZ, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation[EB/OL]. [2016-10-08] https://arxiv.org/abs/1609.08144.
|
[17] |
王宣承. 基于LASSO和神经网络的量化交易智能系统构建—以沪深300股指期货为例[J]. 投资研究, 2014, 33(9): 23-29.
WANG Xuancheng.Construct intelligent quantitative trading systems based on LASSO and ANNs: A case study of CSI300 futures[J]. Review of Investment Studies, 2014, 33(9): 23-29. |
[18] |
张贵勇. 改进的卷积神经网络在金融预测中的应用研究[D]. 郑州: 郑州大学, 2016.
|
[19] |
MAKNICKIEN N, MAKNICKAS A. Application of neural network for forecasting of exchange rates and Forex trading[C]// The 7th International Scientific Conference “Business and Management 2012”. Vilnius, Lithuanian: Vilnius Gediminas Technical University, 2012: 122-127.
|
[20] |
PERSIO L D, HONCHAR O. Artificial neural networks architectures for stock price prediction: Comparisons and applications[J]. International Journal of Circuits, Systems and Signal Processing, 2016, 10: 403-413.
|
[21] |
LU D W. Agent inspired trading using recurrent reinforcement learning and LSTM neural networks[EB/ OL]. [2017-07-23] https://arxiv.org/abs/1707.07338.
|
[22] |
龙奥明, 毕秀春, 张曙光. 基于LSTM神经网络的黑色金属期货套利策略模型[J]. 中国科学技术大学学报, 2018, 48(2): 125-132.
LONG Aoming, BI Xiuchung, ZHANG Shuguang.An arbitrage strategy model for ferrous metal futures based on LSTM neural network[J]. Journal of University of Science and Technology of China, 2018, 48(2): 125-132. |
[23] |
范翔. 基于自动化交易平台的高频交易及统计套利分析和研究[D]. 上海: 复旦大学, 2014.
|
[24] |
SILVA E, CASTILHO D, PEREIRA A, et al. A neural network based approach to support the market making strategies in high-frequency trading[C]// 2014 International Joint Conference on Neural Networks. IEEE, 2014: 845-852.
|
[25] |
张德丰. MATLAB神经网络应用设计[M]. 北京:机械工业出版社,2012.
|
[26] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
[27] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.Red Hook,NY: Curran Associates,2012: 1097-1105.
|
[28] |
HUBEL D H, WIESEL T N. Receptive fields,binocular and functional architecture in the cat’s visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
|
[29] |
FUKUSHIMA K.Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Bioological Cybernetics, 1980, 36(4): 193-202.
|
[30] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[31] |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2012-07-03] https://arxiv.org/abs/1207.0580.
|
[32] |
GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks[M]. Berlin: Springer, 2012.
|
[33] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997, 9(8): 1735-1780.
|
[34] |
GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget:Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.)
|