[1] |
陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1988.
|
[2] |
鲁世平.具非线性边界条件的Volterra型泛函微分方程边值问题奇摄动[J].应用数学与力学,2003,24(12):1276-1284.
LU Shiping. Singularly perturbed nonlinear boundary value problem for a kind of volterra type functional differential equation[J]. Applied Mathematics and Mechanics, 2003,24(12): 1276-1284. |
[3] |
任景莉,葛渭高.具非线性边界条件的半线性时滞微分方程边值问题的奇摄动[J].应用数学与力学,2003,24(12):1285-1290.
REN Jingli, GE Weigao. Singularly perturbed boundary value problems for semi-linear retarded differential equations with nonlinear boundary conditions[J]. Applied Mathematics and Mechanics, 2003,24(12):1285-1290. |
[4] |
鲁世平.奇摄动非线性时滞微分方程边值问题[J].数学研究与评论,2003,23(2):304-308.
LU Shiping. Singularly perturbed boundary value problems for nonlinear differential equations with delay[J]. Journal of Mathematical Research and Exposition, 2003, 23(2):304-308. |
[5] |
ZHANG J F, ZHANG P A. Global asymptotic stability for a diffusion Lotka-Volterra competition system with time delays[J].Bull Korean Math Soc,2012,49(6):1255-1262.
|
[6] |
SKRYNNIKOV Y. Solving initial value problem by matching asymptotic expansions[J].SIAM J Appl Math,2012,72(1): 405-416.
|
[7] |
MO J Q, LIN W T, DU Z J. Singularly perturbed solution for nonlinear higher order elliptic equations with two parameters[J].J Sys Sci & Math,2013,33(2): 217-221.
|
[8] |
MO J Q. Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters[J].Chin Phys,2010,19: 010203.
|
[9] |
郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1994.
|
[10] |
O’MALLEY JR R E. Introduction to Singular Perturbation[M]. New York: Academic Press, 1974.)
|