
[1] |
Durlauf S N, Ioannides Y M. Social interactions. Annual Review of Economics, 2010, 2 (1): 451–478. DOI: 10.1146/annurev.economics.050708.143312
|
[2] |
Kim J, Kim M, Choi J, et al. Offline social interactions and online shopping demand: Does the degree of social interactions matter? Journal of Business Research, 2019, 99: 373–381. DOI: 10.1016/j.jbusres.2017.09.022
|
[3] |
Poutvaara P, Siemers L R. Smoking and social interaction. Journal of Health Economics, 2008, 27 (6): 1503–1515. DOI: 10.1016/j.jhealeco.2008.06.005
|
[4] |
Yin J, He X, Yang Y, et al. Outcome-based evaluations of social interaction valence in a contingent response context. Frontiers in Psychology, 2019, 10: 2557. DOI: 10.3389/fpsyg.2019.02557
|
[5] |
Sirakaya S. Recidivism and social interactions. Journal of the American Statistical Association, 2006, 101: 863–877. DOI: 10.1198/016214506000000177
|
[6] |
Blume L E, Brock W A, Durlauf S N, et al. Linear social interactions models. Journal of Political Economy, 2015, 123 (2): 444–496. DOI: 10.1086/679496
|
[7] |
Xu H. Social interactions in large networks: A game theoretic approach. International Economic Review, 2018, 59 (1): 257–284. DOI: 10.1111/iere.12269
|
[8] |
Lin Z, Xu H. Estimation of social-influence-dependent peer pressure in a large network game. The Econometrics Journal, 2017, 20 (3): S86–S102. DOI: 10.1111/ectj.12102
|
[9] |
Sun Z, Du Y, Chen X, et al. Implicit community discovery based on microblog theme homogeneit. IOP Conference Series: Materials Science and Engineering, 2020, 790 (1): 012045. DOI: 10.1088/1757-899X/790/1/012045
|
[10] |
Favre G, Figeac J, Grossetti M, et al. Social distance in France: Evolution of homogeneity within personal networks from 2001 to 2017. Social Networks, 2022, 68: 70–83. DOI: 10.1016/j.socnet.2021.05.001
|
[11] |
Liu L, Wang X, Zheng Y, et al. Homogeneity trend on social networks changes evolutionary advantage in competitive information diffusion. New Journal of Physics, 2020, 22 (1): 013019. DOI: 10.1016/j.socnet.2021.05.001
|
[12] |
Shalizi C R, Thomas A C. Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 2011, 40 (2): 211–239. DOI: 10.1177/0049124111404820
|
[13] |
Davin J P, Gupta S, Piskorski M J. Separating homophily and peer influence with latent space. Boston, MA: Harvard Business School, 2014.
|
[14] |
Hill S, Provost F, Volinsky C. Network-based marketing: Identifying likely adopters via consumer networks. Statistical Science, 2006, 21 (2): 256–276. DOI: 10.1214/088342306000000222
|
[15] |
Worrall H. Community detection as a method to control for homophily in social networks. Corpus ID: 15409339, 2014.
|
[16] |
McFowland III E, Shalizi C R. Estimating causal peer influence in homophilous social networks by inferring latent locations. Journal of the American Statistical Association, 2023, 118: 707–718. DOI: 10.1080/01621459.2021.1953506
|
[17] |
Aguirregabiria V, Mira P. Sequential estimation of dynamic discrete games. Econometrica, 2007, 75 (1): 1–53. DOI: 10.1111/j.1468-0262.2007.00731.x
|
[18] |
Egesdal M, Lai Z, Su C-L. Estimating dynamic discrete-choice games of incomplete information. Quantitative Economics, 2015, 6 (3): 567–597. DOI: 10.3982/QE430
|
[19] |
Manski C F. Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 1993, 60 (3): 531–542. DOI: 10.2307/2298123
|
[20] |
Seim K. An empirical model of firm entry with endogenous product-type choices. The RAND Journal of Economics, 2006, 37 (3): 619–640. DOI: 10.1111/j.1756-2171.2006.tb00034.x
|
[21] |
Han Q, Xu K, Airoldi E. Consistent estimation of dynamic and multi-layer block models. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR, 2015, 37: 1511–1520.
|
[22] |
Pensky M, Zhang T. Spectral clustering in the dynamic stochastic block model. Electronic Journal of Statistics, 2019, 13: 678–709. DOI: 10.1214/19-EJS1533
|
[23] |
Chunaev P. Community detection in node-attributed social networks: A survey. Computer Science Review, 2020, 37: 100286. DOI: 10.1016/j.cosrev.2020.100286
|
[24] |
Liu M, Guo J, Chen J. Community discovery in weighted networks based on the similarity of common neighbors. Journal of Information Processing Systems, 2019, 15 (5): 1055–1067. DOI: 10.3745/JIPS.04.0133
|
[25] |
Gao C, Ma Z, Zhang A Y, et al. Achieving optimal misclassification proportion in stochastic block models. The Journal of Machine Learning Research, 2017, 18 (1): 1980–2024. DOI: 10.5555/3122009.3153016
|
[26] |
Bickel P J, Chen A. A nonparametric view of network models and Newman–Girvan and other modularities. 2009. Proceedings of the National Academy of Sciences, 2009, 106 (50): 21068–21073. DOI: 10.1073/pnas.0907096106
|
[27] |
Zhao Y, Levina E, Zhu J. Consistency of community detection in networks under degree-corrected stochastic block models. Annals of Statistics, 2012, 40: 2266–2292. DOI: 10.1214/12-AOS1036
|
[28] |
Kasahara H, Shimotsu K. Sequential estimation of structural models with a fixed point constraint. Econometrica, 2012, 80 (5): 2303–2319. DOI: 10.3982/ECTA8291
|
Samples | Feed ratio | Time (h) | Conversion (%) | Actual DP | Mn,NMR (g/mol) | Mn,GPC (g/mol) | Mw/Mn | DDLS (nm) |
1 | 1/0.4/400 | 0.5 | 1.9 | 8 | 6690 | 5380 | 1.12 | − |
2 | 1/0.4/400 | 1.0 | 5.1 | 20 | 8970 | 6340 | 1.23 | − |
3 | 1/0.4/400 | 1.5 | 12.1 | 48 | 13890 | 9900 | 1.26 | 125 |
4 | 1/0.4/400 | 2.0 | 20.0 | 80 | 19470 | 11840 | 1.23 | 114 |
5 | 1/0.4/400 | 2.5 | 32.5 | 130 | 28230 | 21600 | 1.21 | 130 |
6 | 1/0.4/400 | 3.0 | 54.4 | 218 | 43680 | 37570 | 1.24 | 237 |
7 | 1/0.4/400 | 3.5 | 68.6 | 274 | 53730 | 48820 | 1.23 | 252 |
8 | 1/0.4/400 | 4.0 | 73.4 | 294 | 57050 | 51440 | 1.24 | 259 |
9 | 1/0.4/400 | 4.5 | 83.6 | 334 | 64200 | 54850 | 1.42 | 267 |
10 | 1/0.4/400 | 5.0 | 88.5 | 354 | 67640 | 59140 | 1.24 | 214 |
11 | 1/0.4/400 | 6.0 | 94.0 | 376 | 71530 | 63510 | 1.28 | 176 |
12 | 1/0.4/400 | 10.0 | 97.6 | 390 | 74080 | 67070 | 1.31 | 218 |
13 | 1/0.4/400 | 12.0 | 98.6 | 394 | 74790 | 69500 | 1.35 | 347 |
Samples | Feed ratio | Time (h) | Conversion (%) | Actual DP | Mn,NMR (g/mol) | Mn,GPC (g/mol) | Đ | DDLS (nm) |
1 | 1/0.4/400 | 0.5 | 1.5 | 6 | 6390 | 5220 | 1.10 | − |
2 | 1/0.4/400 | 1.0 | 4.1 | 16 | 8250 | 6330 | 1.23 | − |
3 | 1/0.4/400 | 1.5 | 12.0 | 48 | 13780 | 9720 | 1.24 | 114 |
4 | 1/0.4/400 | 2.0 | 20.9 | 84 | 20080 | 14590 | 1.27 | 140 |
5 | 1/0.4/400 | 2.5 | 27.0 | 108 | 24390 | 17200 | 1.22 | 149 |
6 | 1/0.4/400 | 3.0 | 48.1 | 192 | 39230 | 33080 | 1.37 | 154 |
7 | 1/0.4/400 | 3.5 | 69.1 | 276 | 54000 | 49970 | 1.25 | 179 |
8 | 1/0.4/400 | 4.0 | 76.6 | 306 | 59290 | 51850 | 1.30 | 264 |
9 | 1/0.4/400 | 4.5 | 86.0 | 344 | 65930 | 58000 | 1.26 | 220 |
10 | 1/0.4/400 | 5.0 | 90.5 | 362 | 69080 | 61300 | 1.23 | 144 |
11 | 1/0.4/400 | 6.0 | 91.5 | 366 | 69780 | 62940 | 1.29 | 246 |
12 | 1/0.4/400 | 10.0 | 97.4 | 390 | 73930 | 66500 | 1.31 | 278 |
13 | 1/0.4/400 | 12.0 | 98.0 | 392 | 74360 | 68100 | 1.34 | 310 |