
A copper-catalyzed highly regioselective protoborylation of 1,4-diynes for the synthesis of alkenylboramide compounds was reported. Various (hetero)aryl and alkyl substituted terminal 1,4-diynes afforded the corresponding products in high yields and regioselectivities. The utility of alkenyl-B(dan) products was proven by their convenient derivatizations.
Regioselective synthesis of branched alkenylborons via copper-catalyzed protoborylation of 1,4-diynes.
2. Substrate scope of 1,4-diynes.a
aThe mixture of 1 (0.2 mmol, 1.0 equiv), 2 (0.2 mmol, 1.0 equiv), Cu(OAc)2 (5 mol%), XPhos (5 mol%), NaOtBu (10 mol%) and MeOH (2.0 equiv) in extra dry toluene (0.4 mol/L) was stirred at 50 °C for 12 h under argon atmosphere. bIsolated yield of 3. cYield of (3+4) was determined by 1H NMR analysis with mesitylene as internal standard. dRatio of 3/4 was determined by crude 1H NMR analysis. eThe amount of substrate 1 was determined by crude 1H NMR analysis.
[1] |
Potgieter M, Wenteler G L, Drewes S E. Synthesis of rooperol [1, 5-bis(3’, 4’-dihydroxyphenyl)pent-l-en-4-yne]. Phytochemistry, 1988, 27: 1101–1104. DOI: 10.1016/0031-9422(88)80282-6
|
[2] |
Organ M G, Ghasemi H. Metal-catalyzed coupling reactions on an olefin template: the total synthesis of (13E, 15E, 18Z, 20Z)-1-hydroxypentacosa-13, 15, 18, 20-tetraen-11-yn-4-one 1-acetate. J. Org. Chem., 2004, 69: 695–700. DOI: 10.1021/jo035376k
|
[3] |
Arfaoui D E, Listunov D, Fabing I, et al. Identification of chiral alkenyl- and alkynylcarbinols as pharmacophores for potent cytotoxicity. Chem. Med. Chem., 2013, 8: 1779–1786. DOI: 10.1002/cmdc.201300230
|
[4] |
Li Y X, Xuan Q Q, Liu L, et al. A Pd(0)-catalyzed direct dehydrative coupling of terminal alkynes with allylic alcohols to access 1, 4-enynes. J. Am. Chem. Soc., 2013, 135: 12536–12539. DOI: 10.1021/ja406025p
|
[5] |
Shi X, Gorin D J, Toste F D. Synthesis of 2-cyclopentenones by gold(I)-catalyzed rautenstrauch rearrangement. J. Am. Chem. Soc., 2005, 127: 5802–5803. DOI: 10.1021/ja051689g
|
[6] |
Wu L J, Song R J, Luo S, et al. Palladium-catalyzed reductive [5+1] cycloaddition of 3-acetoxy-1, 4-enynes with CO: Access to phenols enabled by hydrosilanes. Angew. Chem. Int. Ed., 2018, 57: 13308–13302. DOI: 10.1002/anie.201808388
|
[7] |
Chen X, Baratay C A, Mark M E, et al. Gold and Brønsted acid catalyzed spirocyclization of 2- and 3-indolyl-tethered 1, 4-enyne acetates to spiro[4, n]alkyl[b]indoles. Org. Lett., 2020, 22: 2849–2853. DOI: 10.1021/acs.orglett.0c00929
|
[8] |
Blaszczyk S A, Glazier D A, Tang W. Rhodium-catalyzed (5 + 2) and (5 + 1) cycloadditions using 1, 4-enynes as five-carbon building blocks. Acc. Chem. Res., 2020, 53: 231–243. DOI: 10.1021/acs.accounts.9b00477
|
[9] |
Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95: 2457–2483. DOI: 10.1021/cr00039a007
|
[10] |
Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem., 1999, 576: 147–168. DOI: 10.1016/S0022-328X(98)01055-9
|
[11] |
Kotha S, Lahiri K, Kashinath D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron, 2002, 58: 9633–9695. DOI: 10.1016/S0040-4020(02)01188-2
|
[12] |
Molander G A, Ellis N. Organotrifluoroborates: Protected Boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res., 2007, 40: 275–286. DOI: 10.1021/ar050199q
|
[13] |
Tobisu M, Chatani N. Borreagentien für die orthogonale Funktionalisierung mithilfe von Suzuki-Miyaura-Kreuzkupplungen. Angew. Chem. Int. Ed., 2009, 121: 3617–3620. DOI: 10.1002/ange.200900465
|
[14] |
Lennox A J J, Lloyd-Jones G C. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev., 2014, 43: 412–443. DOI: 10.1039/C3CS60197H
|
[15] |
Zhang L, Lovinger G J, Edelstein E K, et al. Catalytic conjunctive cross-coupling enabled by metal-induced metallate rearrangement. Science, 2016, 351: 70–74. DOI: 10.1126/science.aad6080
|
[16] |
Tucker C E, Davidson J, Knochel P. Mild and stereoselective hydroborations of functionalized alkynes and alkenes using pinacolborane. J. Org. Chem., 1992, 57: 3482–3485. DOI: 10.1021/jo00038a044
|
[17] |
Miyaura N. Metal-catalyzed reactions of organoboronic acids and esters. Bull. Chem. Soc. Jpn., 2008, 81: 1535–1553. DOI: 10.1246/bcsj.81.1535
|
[18] |
Zhao M, Shan C C, Wang Z L, et al. Ligand-dependent-controlled copper-catalyzed regio- and stereoselective silaboration of alkynes. Org. Lett., 2019, 21: 6016–6020. DOI: 10.1021/acs.orglett.9b02160
|
[19] |
Bose S K, Mao L, Kuehn L, et al. First-row d block element-catalyzed carbon–boron bond formation and related processes. Chem. Rev., 2021, 121: 13238–13341. DOI: 10.1021/acs.chemrev.1c00255
|
[20] |
Alam S, Karim R, Khan A, et al. Copper-catalyzed preparation of alkenylboronates and arylboronates. Eur. J. Org. Chem., 2021, 2021: 6115–6160. DOI: 10.1002/ejoc.202100817
|
[21] |
Beletskaya I, Pelter A. Hydroborations catalysed by transition metal complexes. Tetrahedron, 1997, 53: 4957–5026. DOI: 10.1016/S0040-4020(97)00001-X
|
[22] |
Wang Y D, Kimball G, Prashad A S, et al. Zr-mediated hydroboration: stereoselective synthesis of vinyl boronic esters. Tetrahedron Lett., 2005, 46: 8777–8780. DOI: 10.1016/j.tetlet.2005.10.031
|
[23] |
Iwadate N, Suginome M. Synthesis of B-protected β-styrylboronic acids via iridium-catalyzed hydroboration of alkynes with 1, 8-naphthalenediaminatoborane leading to iterative synthesis of oligo(phenylenevinylene)s. Org. Lett., 2009, 11: 1899–1902. DOI: 10.1021/ol9003096
|
[24] |
Semba K, Fujihara T, Terao J, et al. Copper-catalyzed borylative transformations of non-polar carbon-carbon unsaturated compounds employing borylcopper as an active catalyst species. Tetrahedron, 2015, 71: 2183–2197. DOI: 10.1016/j.tet.2015.02.027
|
[25] |
Neeve E C, Geier S J, Mkhalid I A I, et al. Diboron(4) compounds: From structural curiosity to synthetic workhorse. Chem. Rev., 2016, 116: 9091–9161. DOI: 10.1021/acs.chemrev.6b00193
|
[26] |
Ojha D P, Prabhu K R. Pd-catalyzed hydroborylation of alkynes: A ligand controlled regioselectivity switch for the synthesis of α- or β-vinylboronates. Org. Lett., 2016, 18: 432–435. DOI: 10.1021/acs.orglett.5b03416
|
[27] |
Yoshida H. Borylation of alkynes under base/coinage metal catalysis: Some recent developments. ACS Catal., 2016, 6: 1799–1811. DOI: 10.1021/acscatal.5b02973
|
[28] |
Gunanathan C, Hölscher M, Pan F, et al. Ruthenium catalyzed hydroboration of terminal alkynes to Z-vinylboronates. J. Am. Chem. Soc., 2012, 134: 14349–14352. DOI: 10.1021/ja307233p
|
[29] |
Yamamoto K, Mohara Y, Mutoh Y, et al. Ruthenium-catalyzed (Z)-selective hydroboration of terminal alkynes with naphthalene-1, 8-diaminatoborane. J. Am. Chem. Soc., 2019, 141: 17042–17047. DOI: 10.1021/jacs.9b06910
|
[30] |
Obligacion J V, Neely J M, Yazdani A N, et al. Cobalt catalyzed Z-selective hydroboration of terminal alkynes and elucidation of the origin of selectivity. J. Am. Chem. Soc., 2015, 137: 5855–5858. DOI: 10.1021/jacs.5b00936
|
[31] |
Ben-Daat H, Rock C L, Flores M, et al. Hydroboration of alkynes and nitriles using an α-diimine cobalt hydride catalyst. Chem. Commun., 2017, 53: 7333–7336. DOI: 10.1039/C7CC02281F
|
[32] |
Zhang G, Li S, Wu J, et al. Highly efficient and selective hydroboration of terminal and internal alkynes catalysed by a cobalt (II) coordination polymer. Org. Chem. Front., 2019, 6: 3228–3233. DOI: 10.1039/C9QO00834A
|
[33] |
Chen J, Shen X, Lu Z. Cobalt-catalyzed Markovnikov-type selective hydroboration of terminal alkynes. Angew. Chem. Int. Ed., 2021, 60: 690–694. DOI: 10.1002/anie.202012164
|
[34] |
Pereira S, Srebnik M. A study of hydroboration of alkenes and alkynes with pinacolborane catalyzed by transition metals. Tetrahedron Lett., 1996, 37: 3283–3286. DOI: 10.1016/0040-4039(96)00576-X
|
[35] |
Ohmura T, Yamamoto Y, Miyaura N. Rhodium- or Iridium-catalyzed trans-hydroboration of terminal alkynes, giving (Z)-1-alkenylboron compounds. J. Am. Chem. Soc., 2000, 122: 4990–4991. DOI: 10.1021/ja0002823
|
[36] |
Lee T, Baik C, Jung I, et al. Stereoselective hydroboration of diynes and triyne to give products containing multiple vinylene bridges: A versatile application to fluorescent dyes and light-emitting copolymers. Organometallics, 2004, 23: 4569–4575. DOI: 10.1021/om049832m
|
[37] |
Lyu Y, Toriumi N, Iwasawa N. (Z)-Selective hydroboration of terminal alkynes catalyzed by a PSP–pincer rhodium complex. Org. Lett., 2021, 23: 9262–9266. DOI: 10.1021/acs.orglett.1c03606
|
[38] |
Takahashi K, Ishiyama T, Miyaura N. A borylcopper species generated from bis(pinacolato)diboron and its additions to α, β-unsaturated carbonyl compounds and terminal alkynes. J. Organomet. Chem., 2001, 625: 47–53. DOI: 10.1016/S0022-328X(00)00826-3
|
[39] |
Jang H, Zhugralin A R, Lee Y, et al. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. J. Am. Chem. Soc., 2011, 133: 7859–7871. DOI: 10.1021/ja2007643
|
[40] |
Moure A L, Mauleón P, Arrayás R G, et al. Formal regiocontrolled hydroboration of unbiased internal alkynes via borylation/allylic alkylation of terminal alkynes. Org. Lett., 2013, 15: 2054–2057. DOI: 10.1021/ol4007663
|
[41] |
Yoshida H, Takemoto Y, Takaki K. A masked diboron in Cu-catalysed borylation reaction: highly regioselective formal hydroboration of alkynes for synthesis of branched alkenylborons. Chem. Commun., 2014, 50: 8299–8302. DOI: 10.1039/C4CC01757A
|
[42] |
Zhang P, Suárez J M, Driant T, et al. Cyclodextrin cavity-induced mechanistic switch in copper-catalyzed hydroboration. Angew. Chem. Int. Ed., 2017, 56: 10821–10825. DOI: 10.1002/anie.201705303
|
[43] |
Gao Y, Yazdani S, Kendrick IV A, et al. Cyclic (alkyl)(amino)carbene ligands enable Cu-catalyzed Markovnikov protoboration and protosilylation of terminal alkynes: A versatile portal to functionalized alkenes. Angew. Chem. Int. Ed., 2021, 60: 19871–19878. DOI: 10.1002/anie.202106107
|
[44] |
Tsushima T, Tanaka H, Nakanishi K, et al. Origins of internal regioselectivity in copper-catalyzed borylation of terminal alkynes. ACS Catal., 2021, 11: 14381–14387. DOI: 10.1021/acscatal.1c04244
|
[45] |
Chen J, Gao S, Gorden J D, et al. Stereoselective syntheses of γ-boryl substituted syn-β-alkoxy- and syn-β-amino-homoallylic alcohols via a regio- and stereoselective allene diboration and aldehyde allylboration reaction sequence. Org. Lett., 2019, 21: 4638–4641. DOI: 10.1021/acs.orglett.9b01535
|
[46] |
Caspers L D, Finkbeiner P, Nachtsheim B J. Direct electrophilic C−H alkynylation of unprotected 2-vinylanilines. Chem. Eur. J., 2017, 23: 2748–2752. DOI: 10.1002/chem.201606026
|
[47] |
Sato T, Onuma T, Nakamura I, et al. Platinum-catalyzed cycloisomerization of 1, 4-enynes via 1, 2-alkenyl rearrangement. Org. Lett., 2011, 13: 4992–4995. DOI: 10.1021/ol202104c
|
Method | Rank-1 (%) | Rank-5 (%) | Rank-20 (%) | mAP (%) |
CNN+XQDA [11] | 68.3 | 82.6 | 89.4 | 49.3 |
QAN [45] | 73.5 | 84.9 | 91.6 | 51.7 |
STAN [16] | 82.3 | − | − | 65.8 |
M3D [23] | 84.4 | 93.8 | 97.7 | 74.0 |
COSAM [46] | 84.9 | 95.5 | 97.9 | 79.9 |
Snippet [47] | 86.3 | 94.7 | 98.2 | 76.1 |
GLTR [48] | 87.0 | 95.8 | 98.2 | 78.5 |
RGSAT [1] | 89.4 | 96.9 | 98.3 | 84.0 |
AGRL [15] | 89.8 | 96.1 | 97.6 | 81.1 |
TCLNet [42] | 89.8 | − | − | 85.1 |
STGCN [14] | 90.0 | 96.4 | 98.3 | 83.7 |
AP3D [34] | 90.1 | − | − | 85.1 |
STRF [49] | 90.3 | − | − | 86.1 |
DenseIL [50] | 90.8 | 97.1 | 98.8 | 87.0 |
SS-HSP | 91.0 | 96.9 | 98.6 | 85.9 |
Method | Rank-1 (%) | Rank-5 (%) | Rank-20 (%) |
CNN+XQDA [11] | 53.0 | 81.4 | 95.1 |
QAN [45] | 68.0 | 86.8 | 97.4 |
M3D [23] | 74.0 | 94.33 | − |
COSAM [46] | 79.6 | 95.3 | − |
STAN [26] | 80.2 | − | − |
AGRL [15] | 83.7 | 95.4 | 99.5 |
Snippet [47] | 85.4 | 96.7 | 99.5 |
RGSAT [1] | 86.0 | 98.0 | 99.4 |
GLTR [48] | 86.0 | 98.0 | − |
TCLNet [42] | 86.6 | − | − |
AP3D [34] | 86.7 | − | − |
DenseIL [50] | 92.0 | 98.0 | − |
SS-HSP | 88.3 | 98.4 | 99.9 |
Model | Rank-1 (%) | Rank-5 (%) | Rank-20 (%) | mAP (%) |
Basel | 86.3 | 94.6 | 97.2 | 79.1 |
Basel+Part | 88.5 | 95.7 | 98.0 | 82.8 |
Basel+Part+Motion | 89.9 | 96.4 | 98.4 | 84.9 |
Basel+Part+Motion+TRB | 91.0 | 96.9 | 98.6 | 85.9 |
Model | Rank-1 (%) | Rank-5 (%) | Rank-20 (%) | mAP (%) |
SS-HSP w/o {\cal{L} }_{{\rm{tri}}} | 87.2 | 94.7 | 97.8 | 81.8 |
SS-HSP w/o {\cal{L} }_{{\rm{ide}}} | 88.3 | 95.5 | 98.1 | 83.0 |
SS-HSP w/o {\cal{L} }_{{\rm{equ}}} | 89.0 | 96.0 | 98.4 | 84.1 |
SS-HSP w/o {\cal{L} }_{{\rm{geo}}} | 90.3 | 96.5 | 98.5 | 85.2 |
SS-HSP | 91.0 | 96.9 | 98.6 | 85.9 |