ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Raman study of surface modified bi-layer graphene under high pressure

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.07.006
  • Received Date: 21 April 2020
  • Accepted Date: 15 May 2020
  • Rev Recd Date: 15 May 2020
  • Publish Date: 31 July 2020
  • Raman spectroscopy is one of the most effective ways to characterize the structure and properties of graphene. The interlayer interactions in bi-layer graphene
    Raman spectroscopy is one of the most effective ways to characterize the structure and properties of graphene. The interlayer interactions in bi-layer graphene
  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666-669.
    [2]
    NOVOSELOV K S, FAL V, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490: 192-200.
    [3]
    HONE J, LEE C, WEI X, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385-388.
    [4]
    ELIAS D C, NAIR R R, MOHIUDDIN T, et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane[J]. Science, 2009, 323(5914): 610-613.
    [5]
    WU J B, LIN M L, CONG X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices[J]. Chemical Society Reviews, 2018, 47: 1822-1873.
    [6]
    HSIEH W P, TRIGO M, REIS D A, et al. Evidence for photo-induced monoclinic metallic VO2 under high pressure[J]. Applied Physics Letters, 2014, 104 (2): 021917.
    [7]
    MARTINS L, MATOS M, PASCHOAL A R, et al. Raman evidence for pressure-induced formation of diamondene[J]. Nature Communications, 2017, 8: 96; doi: 10.1038/s41467-017-00149-8.
    [8]
    PROCTOR J E, GREGORYANZ E, NOVOSELOV K S, et al. High-pressure Raman spectroscopy of graphene[J]. Physical Review B, 2009, 80: 073408.
    [9]
    KE F, CHEN Y, YIN K, et al. Large bandgap of pressurized trilayer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9186-9190.
    [10]
    GAO Y, CAO T, CELLINI F, et al. Ultrahard carbon film from epitaxial two-layer graphene[J]. Nature Nanotechnology, 2018, 13: 133-138.
    [11]
    BARBOZA A, GUIMARAES M, MASSOTE D, et al. Room‐temperature compression‐induced diamondization of few‐layer graphene[J]. Advanced Materials, 2011, 23(27): 3014-3017.
    [12]
    ANTIPINA L Y, SOROKIN P B. Converting chemically functionalized few-layer graphene to diamond films: A computational study[J]. The Journal of Physical Chemistry C, 2015, 119: 2828-2836.
    [13]
    JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics, 1983, 55: 65-108.
    [14]
    WANG L, LIU B, LI H, et al. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks[J]. Science, 2012, 337(6096): 825-828.
    [15]
    LU S C, YAO M G, YANG X G, et al. High pressure transformation of graphene nanoplates: A Raman study[J]. Chemical Physics Letters, 2013, 585:101-106.
    [16]
    RAJASEKARAN S, ABILD-PEDERSEN F, OGASAWARA H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene[J]. Physical Review Letters, 2013, 111(8): 085503.
    [17]
    YANG R, HUANG Q S, CHEN X L, et al. Substrate doping effects on Raman spectrum of epitaxial graphene on SiC[J]. Journal of Applied Physics, 2010, 107: 034305.
    [18]
    FERRARI A, ROBERTSON J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B, 2001, 64: 075414.
    [19]
    AMSLER M, FLORES-LIVAS J A, LEHTOVAARA L, et al. Crystal structure of cold compressed graphite[J]. Physical Review Letters, 2012, 108: 065501.
    [20]
    BAKHAREV P V, HUANG M, SAXENA M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond[J]. Nature Nanotechnology, 2020, 15(1): 59-66.
    [21]
    ZHANG C, LIN W, ZHAO Z, et al. CVD synthesis of nitrogen-doped graphene using urea[J]. Science China Physics, Mechanics & Astronomy, 2015, 58: 107801.)
  • 加载中

Catalog

    [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666-669.
    [2]
    NOVOSELOV K S, FAL V, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490: 192-200.
    [3]
    HONE J, LEE C, WEI X, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385-388.
    [4]
    ELIAS D C, NAIR R R, MOHIUDDIN T, et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane[J]. Science, 2009, 323(5914): 610-613.
    [5]
    WU J B, LIN M L, CONG X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices[J]. Chemical Society Reviews, 2018, 47: 1822-1873.
    [6]
    HSIEH W P, TRIGO M, REIS D A, et al. Evidence for photo-induced monoclinic metallic VO2 under high pressure[J]. Applied Physics Letters, 2014, 104 (2): 021917.
    [7]
    MARTINS L, MATOS M, PASCHOAL A R, et al. Raman evidence for pressure-induced formation of diamondene[J]. Nature Communications, 2017, 8: 96; doi: 10.1038/s41467-017-00149-8.
    [8]
    PROCTOR J E, GREGORYANZ E, NOVOSELOV K S, et al. High-pressure Raman spectroscopy of graphene[J]. Physical Review B, 2009, 80: 073408.
    [9]
    KE F, CHEN Y, YIN K, et al. Large bandgap of pressurized trilayer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9186-9190.
    [10]
    GAO Y, CAO T, CELLINI F, et al. Ultrahard carbon film from epitaxial two-layer graphene[J]. Nature Nanotechnology, 2018, 13: 133-138.
    [11]
    BARBOZA A, GUIMARAES M, MASSOTE D, et al. Room‐temperature compression‐induced diamondization of few‐layer graphene[J]. Advanced Materials, 2011, 23(27): 3014-3017.
    [12]
    ANTIPINA L Y, SOROKIN P B. Converting chemically functionalized few-layer graphene to diamond films: A computational study[J]. The Journal of Physical Chemistry C, 2015, 119: 2828-2836.
    [13]
    JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics, 1983, 55: 65-108.
    [14]
    WANG L, LIU B, LI H, et al. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks[J]. Science, 2012, 337(6096): 825-828.
    [15]
    LU S C, YAO M G, YANG X G, et al. High pressure transformation of graphene nanoplates: A Raman study[J]. Chemical Physics Letters, 2013, 585:101-106.
    [16]
    RAJASEKARAN S, ABILD-PEDERSEN F, OGASAWARA H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene[J]. Physical Review Letters, 2013, 111(8): 085503.
    [17]
    YANG R, HUANG Q S, CHEN X L, et al. Substrate doping effects on Raman spectrum of epitaxial graphene on SiC[J]. Journal of Applied Physics, 2010, 107: 034305.
    [18]
    FERRARI A, ROBERTSON J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B, 2001, 64: 075414.
    [19]
    AMSLER M, FLORES-LIVAS J A, LEHTOVAARA L, et al. Crystal structure of cold compressed graphite[J]. Physical Review Letters, 2012, 108: 065501.
    [20]
    BAKHAREV P V, HUANG M, SAXENA M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond[J]. Nature Nanotechnology, 2020, 15(1): 59-66.
    [21]
    ZHANG C, LIN W, ZHAO Z, et al. CVD synthesis of nitrogen-doped graphene using urea[J]. Science China Physics, Mechanics & Astronomy, 2015, 58: 107801.)

    Article Metrics

    Article views (47) PDF downloads(121)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return