[1] |
Chen Z, Du H, Li J, et al. Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect. Energy Economics, 2019, 81: 1029–1041. doi: 10.1016/j.eneco.2019.06.009
|
[2] |
Nie Q, Zhang L, Li S. How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles. Applied Energy, 2022, 313: 118855. doi: 10.1016/j.apenergy.2022.118855
|
[3] |
Fan R, Bao X, Du K, et al. The effect of government policies and consumer green preferences on the R&D diffusion of new energy vehicles: A perspective of complex network games. Energy, 2022, 254: 124316. doi: 10.1016/j.energy.2022.124316
|
[4] |
Liu J Y, Feng C. Marginal abatement costs of carbon dioxide emissions and its influencing factors: A global perspective. Journal of Cleaner Production, 2018, 170: 1433–1450. doi: 10.1016/j.jclepro.2017.09.216
|
[5] |
Li S, Liu J, Wu J, et al. Spatial spillover effect of carbon emission trading policy on carbon emission reduction: Empirical data from transport industry in China. Journal of Cleaner Production, 2022, 371: 133529. doi: 10.1016/j.jclepro.2022.133529
|
[6] |
Brewer T L. Black carbon emissions and regulatory policies in transportation. Energy Policy, 2019, 129: 1047–1055. doi: 10.1016/j.enpol.2019.02.073
|
[7] |
Halat K, Hafezalkotob A. Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Computers & Industrial Engineering, 2019, 128: 807–830. doi: 10.1016/j.cie.2019.01.009
|
[8] |
Hong Z, Chu C, Zhang L L, et al. Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm. International Journal of Production Economics, 2017, 193: 172–182. doi: 10.1016/j.ijpe.2017.07.009
|
[9] |
Liu C M, Sun Z, Zhang J. Research on the effect of carbon emission reduction policy in China’s carbon emissions trading pilot. China Population, Resources and Environment, 2019, 29 (11): 49–58. (in Chinese) doi: 10.12062/cpre.20190619
|
[10] |
Zhang X, Fan D. Research on the impact of the carbon emissions trading market on the efficiency of carbon emission reduction: An empirical analysis based on the double mediation effect. Science of Science and Management of S.&T., 2021, 42 (11): 20–38. (in Chinese)
|
[11] |
Cao K, Xu X, Wu Q, et al. Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. Journal of Cleaner Production, 2017, 167: 505–513. doi: 10.1016/j.jclepro.2017.07.251
|
[12] |
Fang G, Tian L, Liu M, et al. How to optimize the development of carbon trading in China—Enlightenment from evolution rules of the EU carbon price. Applied Energy, 2018, 211: 1039–1049. doi: 10.1016/j.apenergy.2017.12.001
|
[13] |
Wang C, Wang W, Huang R. Supply chain enterprise operations and government carbon tax decisions considering carbon emissions. Journal of Cleaner Production, 2017, 152: 271–280. doi: 10.1016/j.jclepro.2017.03.051
|
[14] |
Chen H, Qi S, Zhang J. Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment. Applied Energy, 2022, 324: 119719. doi: 10.1016/j.apenergy.2022.119719
|
[15] |
Sun L, Cao X, Alharthi M, et al. Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers. Journal of Cleaner Production, 2020, 264: 121664. doi: 10.1016/j.jclepro.2020.121664
|
[16] |
Zhou Y, Hu F, Zhou Z. Pricing decisions and social welfare in a supply chain with multiple competing retailers and carbon tax policy. Journal of Cleaner Production, 2018, 190: 752–777. doi: 10.1016/j.jclepro.2018.04.162
|
[17] |
Kong D, Xia Q, Xue Y, et al. Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective. Applied Energy, 2020, 266: 114887. doi: 10.1016/j.apenergy.2020.114887
|
[18] |
Shu T, Wu Q, Chen S, et al. Manufacturers’/remanufacturers’ inventory control strategies with cap-and-trade regulation. Journal of Cleaner Production, 2017, 159: 11–25. doi: 10.1016/j.jclepro.2017.05.021
|
[19] |
Zhang Y J, Shi W, Jiang L. Does China’s carbon emissions trading policy improve the technology innovation of relevant enterprises? Business Strategy and the Environment, 2020, 29 (3): 872–885. doi: 10.1002/bse.2404
|
[20] |
Wang M, Li Y, Li M, et al. Will carbon tax affect the strategy and performance of low-carbon technology sharing between enterprises? Journal of Cleaner Production, 2019, 210: 724–737. doi: 10.1016/j.jclepro.2018.10.321
|
[21] |
Zhang L, Xue L, Zhou Y. How do low-carbon policies promote green diffusion among alliance-based firms in China? An evolutionary-game model of complex networks. Journal of Cleaner Production, 2019, 210: 518–529. doi: 10.1016/j.jclepro.2018.11.028
|
[22] |
Zhao M, Sun T, Feng Q. Capital allocation efficiency, technological innovation and vehicle carbon emissions: Evidence from a panel threshold model of Chinese new energy vehicles enterprises. Science of the Total Environment, 2021, 784: 147104. doi: 10.1016/j.scitotenv.2021.147104
|
[23] |
Du H, Chen Z, Peng B, et al. What drives CO2 emissions from the transport sector? A linkage analysis. Energy, 2019, 175: 195–204. doi: 10.1016/j.energy.2019.03.052
|
[24] |
Bonsu N O. Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. Journal of Cleaner Production, 2020, 256: 120659. doi: 10.1016/j.jclepro.2020.120659
|
[25] |
Ma J, Hou Y, Yang W, et al. A time-based pricing game in a competitive vehicle market regarding the intervention of carbon emission reduction. Energy Policy, 2020, 142: 111440. doi: 10.1016/j.enpol.2020.111440
|
[26] |
Yao M, Liu H, Feng X. The development of low-carbon vehicles in China. Energy Policy, 2011, 39 (9): 5457–5464. doi: 10.1016/j.enpol.2011.05.017
|
[27] |
Li Y, Zhang Q, Liu B, et al. Substitution effect of new-energy vehicle credit program and corporate average fuel consumption regulation for green-car subsidy. Energy, 2018, 152: 223–236. doi: 10.1016/j.energy.2018.03.134
|
[28] |
Li J, Ku Y, Liu C, et al. Dual credit policy: Promoting new energy vehicles with battery recycling in a competitive environment? Journal of Cleaner Production, 2020, 243: 118456. doi: 10.1016/j.jclepro.2019.118456
|
[29] |
Nie Q, Zhang L, Tong Z, et al. Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry. Energy, 2022, 259: 124904. doi: 10.1016/j.energy.2022.124904
|
[30] |
Yu P. Carbon tax/subsidy policy choice and its effects in the presence of interest groups. Energy Policy, 2020, 147: 111886. doi: 10.1016/j.enpol.2020.111886
|
[31] |
Liao D, Tan B. An evolutionary game analysis of new energy vehicles promotion considering carbon tax in post-subsidy era. Energy, 2023, 264: 126156. doi: 10.1016/j.energy.2022.126156
|
[32] |
Tian Y, Xiong S, Ma X, et al. Structural path decomposition of carbon emission: A study of China’s manufacturing industry. Journal of Cleaner Production, 2018, 193: 563–574. doi: 10.1016/j.jclepro.2018.05.047
|
[33] |
Lindner S, Liu Z, Guan D, et al. CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives. Renewable and Sustainable Energy Reviews, 2013, 19: 164–172. doi: 10.1016/j.rser.2012.10.050
|
[34] |
Xu H, Pan X, Li J, et al. Comparing the impacts of carbon tax and carbon emission trading, which regulation is more effective? Journal of Environmental Management, 2023, 330: 117156. doi: 10.1016/j.jenvman.2022.117156
|
[35] |
Luo W, Zhang Y, Gao Y, et al. Life cycle carbon cost of buildings under carbon trading and carbon tax system in China. Sustainable Cities and Society, 2021, 66: 102509. doi: 10.1016/j.scs.2020.102509
|
[36] |
Jia Z, Lin B. Rethinking the choice of carbon tax and carbon trading in China. Technological Forecasting and Social Change, 2020, 159: 120187. doi: 10.1016/j.techfore.2020.120187
|
[37] |
Hu X, Yang Z, Sun J, et al. Carbon tax or cap-and-trade: Which is more viable for Chinese remanufacturing industry? Journal of Cleaner Production, 2020, 243: 118606. doi: 10.1016/j.jclepro.2019.118606
|
[38] |
Sun H, Yang J. Optimal decisions for competitive manufacturers under carbon tax and cap-and-trade policies. Computers & Industrial Engineering, 2021, 156: 107244. doi: 10.1016/j.cie.2021.107244
|
[39] |
Chen Y, Wang C, Nie P, et al. A clean innovation comparison between carbon tax and cap-and-trade system. Energy Strategy Reviews, 2020, 29: 100483. doi: 10.1016/j.esr.2020.100483
|
[40] |
Yin G, Zhou L, Duan M, et al. Impacts of carbon pricing and renewable electricity subsidy on direct cost of electricity generation: A case study of China’s provincial power sector. Journal of Cleaner Production, 2018, 205: 375–387. doi: 10.1016/j.jclepro.2018.09.108
|
[41] |
Liebensteiner M, Haxhimusa A, Naumann F. Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy. Renewable and Sustainable Energy Reviews, 2023, 171: 112990. doi: 10.1016/j.rser.2022.112990
|
[42] |
Li G, Zheng H, Ji X, et al. Game theoretical analysis of firms’ operational low-carbon strategy under various cap-and-trade mechanisms. Journal of Cleaner Production, 2018, 197: 124–133. doi: 10.1016/j.jclepro.2018.06.177
|
[43] |
Lou G, Ma H, Fan T, et al. Impact of the dual-credit policy on improvements in fuel economy and the production of internal combustion engine vehicles. Resources, Conservation and Recycling, 2020, 156: 104712. doi: 10.1016/j.resconrec.2020.104712
|
[44] |
Ou S, Lin Z, Qi L, et al. The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China. Energy Policy, 2018, 121: 597–610. doi: 10.1016/j.enpol.2018.06.017
|
[45] |
Meng W, Ma M, Li Y, et al. New energy vehicle R&D strategy with supplier capital constraints under China’s dual credit policy. Energy Policy, 2022, 168: 113099. doi: 10.1016/j.enpol.2022.113099
|
[46] |
He H, Li S, Wang S, et al. Interaction mechanism between dual-credit pricing and automobile manufacturers’ electrification decisions. Transportation Research Part D: Transport and Environment, 2022, 109: 103390. doi: 10.1016/j.trd.2022.103390
|
[47] |
Qiao Q, Zhao F, Liu Z, et al. Life cycle greenhouse gas emissions of electric vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 2019, 177: 222–233. doi: 10.1016/j.energy.2019.04.080
|
[48] |
Luo Z, Chen X, Wang X. The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 2016, 253 (2): 392–403. doi: 10.1016/j.ejor.2016.02.030
|
[49] |
Wang S, Chen K, Zhao F, et al. Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China. Applied Energy, 2019, 241: 257–277. doi: 10.1016/j.apenergy.2019.03.092
|
[50] |
Miller M, Modigliani F. The cost of capital, corporate finance and the theory of investment. American Economic Review, 1958, 48 (3): 261–297.
|
[51] |
Chang K, Xue C, Zhang H, et al. The effects of green fiscal policies and R&D investment on a firm’s market value: New evidence from the renewable energy industry in China. Energy, 2022, 251: 123953. doi: 10.1016/j.energy.2022.123953
|
[1] |
Chen Z, Du H, Li J, et al. Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect. Energy Economics, 2019, 81: 1029–1041. doi: 10.1016/j.eneco.2019.06.009
|
[2] |
Nie Q, Zhang L, Li S. How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles. Applied Energy, 2022, 313: 118855. doi: 10.1016/j.apenergy.2022.118855
|
[3] |
Fan R, Bao X, Du K, et al. The effect of government policies and consumer green preferences on the R&D diffusion of new energy vehicles: A perspective of complex network games. Energy, 2022, 254: 124316. doi: 10.1016/j.energy.2022.124316
|
[4] |
Liu J Y, Feng C. Marginal abatement costs of carbon dioxide emissions and its influencing factors: A global perspective. Journal of Cleaner Production, 2018, 170: 1433–1450. doi: 10.1016/j.jclepro.2017.09.216
|
[5] |
Li S, Liu J, Wu J, et al. Spatial spillover effect of carbon emission trading policy on carbon emission reduction: Empirical data from transport industry in China. Journal of Cleaner Production, 2022, 371: 133529. doi: 10.1016/j.jclepro.2022.133529
|
[6] |
Brewer T L. Black carbon emissions and regulatory policies in transportation. Energy Policy, 2019, 129: 1047–1055. doi: 10.1016/j.enpol.2019.02.073
|
[7] |
Halat K, Hafezalkotob A. Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Computers & Industrial Engineering, 2019, 128: 807–830. doi: 10.1016/j.cie.2019.01.009
|
[8] |
Hong Z, Chu C, Zhang L L, et al. Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm. International Journal of Production Economics, 2017, 193: 172–182. doi: 10.1016/j.ijpe.2017.07.009
|
[9] |
Liu C M, Sun Z, Zhang J. Research on the effect of carbon emission reduction policy in China’s carbon emissions trading pilot. China Population, Resources and Environment, 2019, 29 (11): 49–58. (in Chinese) doi: 10.12062/cpre.20190619
|
[10] |
Zhang X, Fan D. Research on the impact of the carbon emissions trading market on the efficiency of carbon emission reduction: An empirical analysis based on the double mediation effect. Science of Science and Management of S.&T., 2021, 42 (11): 20–38. (in Chinese)
|
[11] |
Cao K, Xu X, Wu Q, et al. Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. Journal of Cleaner Production, 2017, 167: 505–513. doi: 10.1016/j.jclepro.2017.07.251
|
[12] |
Fang G, Tian L, Liu M, et al. How to optimize the development of carbon trading in China—Enlightenment from evolution rules of the EU carbon price. Applied Energy, 2018, 211: 1039–1049. doi: 10.1016/j.apenergy.2017.12.001
|
[13] |
Wang C, Wang W, Huang R. Supply chain enterprise operations and government carbon tax decisions considering carbon emissions. Journal of Cleaner Production, 2017, 152: 271–280. doi: 10.1016/j.jclepro.2017.03.051
|
[14] |
Chen H, Qi S, Zhang J. Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment. Applied Energy, 2022, 324: 119719. doi: 10.1016/j.apenergy.2022.119719
|
[15] |
Sun L, Cao X, Alharthi M, et al. Carbon emission transfer strategies in supply chain with lag time of emission reduction technologies and low-carbon preference of consumers. Journal of Cleaner Production, 2020, 264: 121664. doi: 10.1016/j.jclepro.2020.121664
|
[16] |
Zhou Y, Hu F, Zhou Z. Pricing decisions and social welfare in a supply chain with multiple competing retailers and carbon tax policy. Journal of Cleaner Production, 2018, 190: 752–777. doi: 10.1016/j.jclepro.2018.04.162
|
[17] |
Kong D, Xia Q, Xue Y, et al. Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective. Applied Energy, 2020, 266: 114887. doi: 10.1016/j.apenergy.2020.114887
|
[18] |
Shu T, Wu Q, Chen S, et al. Manufacturers’/remanufacturers’ inventory control strategies with cap-and-trade regulation. Journal of Cleaner Production, 2017, 159: 11–25. doi: 10.1016/j.jclepro.2017.05.021
|
[19] |
Zhang Y J, Shi W, Jiang L. Does China’s carbon emissions trading policy improve the technology innovation of relevant enterprises? Business Strategy and the Environment, 2020, 29 (3): 872–885. doi: 10.1002/bse.2404
|
[20] |
Wang M, Li Y, Li M, et al. Will carbon tax affect the strategy and performance of low-carbon technology sharing between enterprises? Journal of Cleaner Production, 2019, 210: 724–737. doi: 10.1016/j.jclepro.2018.10.321
|
[21] |
Zhang L, Xue L, Zhou Y. How do low-carbon policies promote green diffusion among alliance-based firms in China? An evolutionary-game model of complex networks. Journal of Cleaner Production, 2019, 210: 518–529. doi: 10.1016/j.jclepro.2018.11.028
|
[22] |
Zhao M, Sun T, Feng Q. Capital allocation efficiency, technological innovation and vehicle carbon emissions: Evidence from a panel threshold model of Chinese new energy vehicles enterprises. Science of the Total Environment, 2021, 784: 147104. doi: 10.1016/j.scitotenv.2021.147104
|
[23] |
Du H, Chen Z, Peng B, et al. What drives CO2 emissions from the transport sector? A linkage analysis. Energy, 2019, 175: 195–204. doi: 10.1016/j.energy.2019.03.052
|
[24] |
Bonsu N O. Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. Journal of Cleaner Production, 2020, 256: 120659. doi: 10.1016/j.jclepro.2020.120659
|
[25] |
Ma J, Hou Y, Yang W, et al. A time-based pricing game in a competitive vehicle market regarding the intervention of carbon emission reduction. Energy Policy, 2020, 142: 111440. doi: 10.1016/j.enpol.2020.111440
|
[26] |
Yao M, Liu H, Feng X. The development of low-carbon vehicles in China. Energy Policy, 2011, 39 (9): 5457–5464. doi: 10.1016/j.enpol.2011.05.017
|
[27] |
Li Y, Zhang Q, Liu B, et al. Substitution effect of new-energy vehicle credit program and corporate average fuel consumption regulation for green-car subsidy. Energy, 2018, 152: 223–236. doi: 10.1016/j.energy.2018.03.134
|
[28] |
Li J, Ku Y, Liu C, et al. Dual credit policy: Promoting new energy vehicles with battery recycling in a competitive environment? Journal of Cleaner Production, 2020, 243: 118456. doi: 10.1016/j.jclepro.2019.118456
|
[29] |
Nie Q, Zhang L, Tong Z, et al. Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry. Energy, 2022, 259: 124904. doi: 10.1016/j.energy.2022.124904
|
[30] |
Yu P. Carbon tax/subsidy policy choice and its effects in the presence of interest groups. Energy Policy, 2020, 147: 111886. doi: 10.1016/j.enpol.2020.111886
|
[31] |
Liao D, Tan B. An evolutionary game analysis of new energy vehicles promotion considering carbon tax in post-subsidy era. Energy, 2023, 264: 126156. doi: 10.1016/j.energy.2022.126156
|
[32] |
Tian Y, Xiong S, Ma X, et al. Structural path decomposition of carbon emission: A study of China’s manufacturing industry. Journal of Cleaner Production, 2018, 193: 563–574. doi: 10.1016/j.jclepro.2018.05.047
|
[33] |
Lindner S, Liu Z, Guan D, et al. CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives. Renewable and Sustainable Energy Reviews, 2013, 19: 164–172. doi: 10.1016/j.rser.2012.10.050
|
[34] |
Xu H, Pan X, Li J, et al. Comparing the impacts of carbon tax and carbon emission trading, which regulation is more effective? Journal of Environmental Management, 2023, 330: 117156. doi: 10.1016/j.jenvman.2022.117156
|
[35] |
Luo W, Zhang Y, Gao Y, et al. Life cycle carbon cost of buildings under carbon trading and carbon tax system in China. Sustainable Cities and Society, 2021, 66: 102509. doi: 10.1016/j.scs.2020.102509
|
[36] |
Jia Z, Lin B. Rethinking the choice of carbon tax and carbon trading in China. Technological Forecasting and Social Change, 2020, 159: 120187. doi: 10.1016/j.techfore.2020.120187
|
[37] |
Hu X, Yang Z, Sun J, et al. Carbon tax or cap-and-trade: Which is more viable for Chinese remanufacturing industry? Journal of Cleaner Production, 2020, 243: 118606. doi: 10.1016/j.jclepro.2019.118606
|
[38] |
Sun H, Yang J. Optimal decisions for competitive manufacturers under carbon tax and cap-and-trade policies. Computers & Industrial Engineering, 2021, 156: 107244. doi: 10.1016/j.cie.2021.107244
|
[39] |
Chen Y, Wang C, Nie P, et al. A clean innovation comparison between carbon tax and cap-and-trade system. Energy Strategy Reviews, 2020, 29: 100483. doi: 10.1016/j.esr.2020.100483
|
[40] |
Yin G, Zhou L, Duan M, et al. Impacts of carbon pricing and renewable electricity subsidy on direct cost of electricity generation: A case study of China’s provincial power sector. Journal of Cleaner Production, 2018, 205: 375–387. doi: 10.1016/j.jclepro.2018.09.108
|
[41] |
Liebensteiner M, Haxhimusa A, Naumann F. Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy. Renewable and Sustainable Energy Reviews, 2023, 171: 112990. doi: 10.1016/j.rser.2022.112990
|
[42] |
Li G, Zheng H, Ji X, et al. Game theoretical analysis of firms’ operational low-carbon strategy under various cap-and-trade mechanisms. Journal of Cleaner Production, 2018, 197: 124–133. doi: 10.1016/j.jclepro.2018.06.177
|
[43] |
Lou G, Ma H, Fan T, et al. Impact of the dual-credit policy on improvements in fuel economy and the production of internal combustion engine vehicles. Resources, Conservation and Recycling, 2020, 156: 104712. doi: 10.1016/j.resconrec.2020.104712
|
[44] |
Ou S, Lin Z, Qi L, et al. The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China. Energy Policy, 2018, 121: 597–610. doi: 10.1016/j.enpol.2018.06.017
|
[45] |
Meng W, Ma M, Li Y, et al. New energy vehicle R&D strategy with supplier capital constraints under China’s dual credit policy. Energy Policy, 2022, 168: 113099. doi: 10.1016/j.enpol.2022.113099
|
[46] |
He H, Li S, Wang S, et al. Interaction mechanism between dual-credit pricing and automobile manufacturers’ electrification decisions. Transportation Research Part D: Transport and Environment, 2022, 109: 103390. doi: 10.1016/j.trd.2022.103390
|
[47] |
Qiao Q, Zhao F, Liu Z, et al. Life cycle greenhouse gas emissions of electric vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 2019, 177: 222–233. doi: 10.1016/j.energy.2019.04.080
|
[48] |
Luo Z, Chen X, Wang X. The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 2016, 253 (2): 392–403. doi: 10.1016/j.ejor.2016.02.030
|
[49] |
Wang S, Chen K, Zhao F, et al. Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China. Applied Energy, 2019, 241: 257–277. doi: 10.1016/j.apenergy.2019.03.092
|
[50] |
Miller M, Modigliani F. The cost of capital, corporate finance and the theory of investment. American Economic Review, 1958, 48 (3): 261–297.
|
[51] |
Chang K, Xue C, Zhang H, et al. The effects of green fiscal policies and R&D investment on a firm’s market value: New evidence from the renewable energy industry in China. Energy, 2022, 251: 123953. doi: 10.1016/j.energy.2022.123953
|