ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Improved electrochemical reversibility of Li-Ni-Te-O cathode by local domain structure optimization

Funds:  Supported by the National Natural Science Foundation of China (11275227, U1632103).
Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2019.04.001
More Information
  • Author Bio:

    QI Jiaxin, male, born in 1991, master. Research field: energy storage and conversion material. E-mail: qjiaxin@mail.ustc.edu.cn

  • Corresponding author: CHU Wangsheng
  • Received Date: 01 March 2018
  • Accepted Date: 22 May 2018
  • Rev Recd Date: 22 May 2018
  • Publish Date: 30 April 2019
  • Novel layered oxide Li1+xNi3/4-5/4xTe1/4+1/4xO2 (x=0, 0.14, 0.33, 0.46, 0.50 and 0.60) cathodes were synthesized by a solid-state reaction method. A unique P1-like domain with a short-range order around Ni ions was found in the monoclinic C2/m crystal with x=0.33, which displays a loosely bonded local structure and increased Li+ mobility, enabling superior structural as well as electrochemical reversibility. The enhanced properties investigated by ex situ X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization were corroborated to originate from the stable short- and long-range ordering structure along with the Ni electron redox. This study may open up new avenues for the development of Li-rich cathode materials with sufficiently good performance.
    Novel layered oxide Li1+xNi3/4-5/4xTe1/4+1/4xO2 (x=0, 0.14, 0.33, 0.46, 0.50 and 0.60) cathodes were synthesized by a solid-state reaction method. A unique P1-like domain with a short-range order around Ni ions was found in the monoclinic C2/m crystal with x=0.33, which displays a loosely bonded local structure and increased Li+ mobility, enabling superior structural as well as electrochemical reversibility. The enhanced properties investigated by ex situ X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization were corroborated to originate from the stable short- and long-range ordering structure along with the Ni electron redox. This study may open up new avenues for the development of Li-rich cathode materials with sufficiently good performance.
  • loading
  • [1]
    JANSE A N , KAHAIAN A J, KEPLE K D, et al. Development of a high-power lithium-ion battery [J]. Journal of Power Sources, 1999, 81: 902-905.
    [2]
    SMITH K, WANG C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662-673.
    [3]
    ARMAND M, TARASCON J M. Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
    [4]
    THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
    [5]
    MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0 <x≤1) : A new cathode material for batteries of high-energy density [J]. Solid State Ionics, 1981, 3-4: 171-174.
    [6]
    OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative-study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4-volt secondary lithium cells [J]. Electrochim Acta,1993, 38(9): 1159-1167.
    [7]
    KOKSBANG R, BARKER J, SHI H, et al. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84(1/2): 1-21.
    [8]
    LU X, SUN Y, JIAN Z L, et al. New insight into the atomic structure of electrochemically delithiated O3-Li1-xCoO2 (0 ≤x≤0.5) nanoparticles [J]. Nano Letters, 2012, 12(12): 6192-6197.
    [9]
    LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries [J]. Angew Chem Int Ed, 2015, 54(15): 4440-4457.
    [10]
    OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries [J]. Chemistry Letters, 2001, 8: 744-745.
    [11]
    YOON W S, GREY C P, BALASUBRAMANIAN M, et al. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling [J]. Chemistry of Materials, 2003, 15(16): 3161-3169.
    [12]
    YABUUCHI N, OHZUKU T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries [J]. Journal of Power Sources, 2003, 119: 171-174.
    [13]
    XU J, LIN F, NORDLUND D, et al. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2 [J]. Chemical Communications, 2016, 52(22): 4239-4242.
    [14]
    DELMAS C, PERES J P, ROUGIER A, et al. On the behavior of the LixNiO2 system: An electrochemical and structural overview [J]. Journal of Power Sources, 1997, 68(1): 120-125.
    [15]
    SHIN D, WOLVERTON C, CROY J, et al. First-principles calculations, electrochemical and X-ray absorption studies of Li-Ni-PO4 surface-treated xLi2MnO3·(1-x)LiMO2 (M= Mn, Ni, Co) electrodes for Li-ion batteries [J]. Journal of The Electrochemical Society, 2011, 159(2): A121-A127.
    [16]
    SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries [J]. Nature Materials, 2012, 11(11): 942-947.
    [17]
    MA X H, KANG K S, CEDER G, et al. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2 [J]. Journal of Power Sources, 2007, 173(1): 550-555.
    [18]
    YABUUCHI N, TAHARA Y, KOMABA S, et al. Synthesis and electrochemical properties of Li4MoO5-NiO binary system as positive electrode materials for rechargeable lithium batteries [J]. Chemistry Of Materials, 2016, 28(2): 416-419.
    [19]
    LAHA S, NATARAJAN S, GOPALAKRISHNAN J, et al. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe) [J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3749-3760.
    [20]
    MORET J, DANIEL F, LOEKSMANTO W, et al. Structure cristalline d'un oxotellurate, Li4TeviO5, à groupement anionique individualisé: Te2viO108- [J]. Acta Crystallographica Section B, 1978, 34(11): 3156-3160.
    [21]
    HEYMANN G, SELB E, KOGLER M, et al. Li3Co1.06(1)TeO6: Synthesis, single-crystal structure and physical properties of a new tellurate compound with CoII/CoIII mixed valence and orthogonally oriented Li-ion channels[J]. Dalton Transactions, 2017, 46(37): 12663-12674.
    [22]
    GUPTA A, KUMAR V, UMA S. Interesting cationic (Li+/Fe3+/Te6+) variations in new rocksalt ordered structures [J]. Journal of Chemical Sciences, 2015, 127(2): 225-233.
    [23]
    MCCALLA E, PRAKASH A S, BERG E, et al. Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials [J]. Journal of the Electrochemical Society, 2015, 162(7): A1341-A1351.
    [24]
    ZVEREVA E A, NALBANDYAN V B, EVSTIGNEEVA M A, et al. Magnetic and electrode properties, structure and phase relations of the layered triangular-lattice tellurate Li4NiTeO6 [J]. Journal of Solid State Chemistry, 2015, 225: 89-96.
    [25]
    SATHIYA M, RAMESHA K, ROUSSE G, et al. Li4NiTeO6 as a positive electrode for Li-ion batteries [J]. Chemical Communications, 2013, 49(97): 11376-11378.
    [26]
    ARUNKUMAR P, JEONG W J, WON S, et al. Improved electrochemical reversibility of over-lithiated layered Li2RuO3 cathodes: Understanding aliovalent Co3+ substitution with excess lithium [J]. Journal of Power Sources, 2016, 324: 428-438.
    [27]
    UNTENECKER H, HOPPE R. Ein neues oxotellurat, Na4TeO5, und eine revision der struktur von Li4TeO5 [J]. Journal of the Less Common Metals, 1987,132(1):79-92.
    [28]
    KANG K, CEDER G. Factors that affect Li mobility in layered lithium transition metal oxides [J]. Physical Review B, 2006, 74(9) : 094105.
    [29]
    URBAN A, LEE J, CEDER G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes [J]. Advanced Energy Materials, 2014, 4(13):13072-13072.
    [30]
    BAO J, WU D, TANG Q, et al. First-principles investigations on delithiation of Li4NiTeO6 [J]. Physical Chemistry Chemical Physics, 2014,16(30): 16145-16149.
    [31]
    HUANG W, TAO S, ZHOU J, et al. Phase separations in LiFe1-xMnxPO4: A random stack model for efficient cathode materials [J]. The Journal of Physical Chemistry C, 2013, 118(2): 796-803.
    [32]
    YABUUCHI N, LU Y C, MANSOUR A N, et al. The influence of heat-treatment temperature on the cation distribution of LiNi0.5Mn0.5O2 and its rate capability in lithium rechargeable batteries [J]. Journal of The Electrochemical Society, 2011,158(2):A192-A200.
    [33]
    YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3- LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
    [34]
    HONG J, LIM H D, LEE M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries [J]. Chemistry of Materials, 2012, 24(14): 2692-2697.)
  • 加载中

Catalog

    [1]
    JANSE A N , KAHAIAN A J, KEPLE K D, et al. Development of a high-power lithium-ion battery [J]. Journal of Power Sources, 1999, 81: 902-905.
    [2]
    SMITH K, WANG C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662-673.
    [3]
    ARMAND M, TARASCON J M. Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
    [4]
    THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
    [5]
    MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0 <x≤1) : A new cathode material for batteries of high-energy density [J]. Solid State Ionics, 1981, 3-4: 171-174.
    [6]
    OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative-study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4-volt secondary lithium cells [J]. Electrochim Acta,1993, 38(9): 1159-1167.
    [7]
    KOKSBANG R, BARKER J, SHI H, et al. Cathode materials for lithium rocking chair batteries [J]. Solid State Ionics, 1996, 84(1/2): 1-21.
    [8]
    LU X, SUN Y, JIAN Z L, et al. New insight into the atomic structure of electrochemically delithiated O3-Li1-xCoO2 (0 ≤x≤0.5) nanoparticles [J]. Nano Letters, 2012, 12(12): 6192-6197.
    [9]
    LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries [J]. Angew Chem Int Ed, 2015, 54(15): 4440-4457.
    [10]
    OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries [J]. Chemistry Letters, 2001, 8: 744-745.
    [11]
    YOON W S, GREY C P, BALASUBRAMANIAN M, et al. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling [J]. Chemistry of Materials, 2003, 15(16): 3161-3169.
    [12]
    YABUUCHI N, OHZUKU T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries [J]. Journal of Power Sources, 2003, 119: 171-174.
    [13]
    XU J, LIN F, NORDLUND D, et al. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2 [J]. Chemical Communications, 2016, 52(22): 4239-4242.
    [14]
    DELMAS C, PERES J P, ROUGIER A, et al. On the behavior of the LixNiO2 system: An electrochemical and structural overview [J]. Journal of Power Sources, 1997, 68(1): 120-125.
    [15]
    SHIN D, WOLVERTON C, CROY J, et al. First-principles calculations, electrochemical and X-ray absorption studies of Li-Ni-PO4 surface-treated xLi2MnO3·(1-x)LiMO2 (M= Mn, Ni, Co) electrodes for Li-ion batteries [J]. Journal of The Electrochemical Society, 2011, 159(2): A121-A127.
    [16]
    SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries [J]. Nature Materials, 2012, 11(11): 942-947.
    [17]
    MA X H, KANG K S, CEDER G, et al. Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2 [J]. Journal of Power Sources, 2007, 173(1): 550-555.
    [18]
    YABUUCHI N, TAHARA Y, KOMABA S, et al. Synthesis and electrochemical properties of Li4MoO5-NiO binary system as positive electrode materials for rechargeable lithium batteries [J]. Chemistry Of Materials, 2016, 28(2): 416-419.
    [19]
    LAHA S, NATARAJAN S, GOPALAKRISHNAN J, et al. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe) [J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3749-3760.
    [20]
    MORET J, DANIEL F, LOEKSMANTO W, et al. Structure cristalline d'un oxotellurate, Li4TeviO5, à groupement anionique individualisé: Te2viO108- [J]. Acta Crystallographica Section B, 1978, 34(11): 3156-3160.
    [21]
    HEYMANN G, SELB E, KOGLER M, et al. Li3Co1.06(1)TeO6: Synthesis, single-crystal structure and physical properties of a new tellurate compound with CoII/CoIII mixed valence and orthogonally oriented Li-ion channels[J]. Dalton Transactions, 2017, 46(37): 12663-12674.
    [22]
    GUPTA A, KUMAR V, UMA S. Interesting cationic (Li+/Fe3+/Te6+) variations in new rocksalt ordered structures [J]. Journal of Chemical Sciences, 2015, 127(2): 225-233.
    [23]
    MCCALLA E, PRAKASH A S, BERG E, et al. Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials [J]. Journal of the Electrochemical Society, 2015, 162(7): A1341-A1351.
    [24]
    ZVEREVA E A, NALBANDYAN V B, EVSTIGNEEVA M A, et al. Magnetic and electrode properties, structure and phase relations of the layered triangular-lattice tellurate Li4NiTeO6 [J]. Journal of Solid State Chemistry, 2015, 225: 89-96.
    [25]
    SATHIYA M, RAMESHA K, ROUSSE G, et al. Li4NiTeO6 as a positive electrode for Li-ion batteries [J]. Chemical Communications, 2013, 49(97): 11376-11378.
    [26]
    ARUNKUMAR P, JEONG W J, WON S, et al. Improved electrochemical reversibility of over-lithiated layered Li2RuO3 cathodes: Understanding aliovalent Co3+ substitution with excess lithium [J]. Journal of Power Sources, 2016, 324: 428-438.
    [27]
    UNTENECKER H, HOPPE R. Ein neues oxotellurat, Na4TeO5, und eine revision der struktur von Li4TeO5 [J]. Journal of the Less Common Metals, 1987,132(1):79-92.
    [28]
    KANG K, CEDER G. Factors that affect Li mobility in layered lithium transition metal oxides [J]. Physical Review B, 2006, 74(9) : 094105.
    [29]
    URBAN A, LEE J, CEDER G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes [J]. Advanced Energy Materials, 2014, 4(13):13072-13072.
    [30]
    BAO J, WU D, TANG Q, et al. First-principles investigations on delithiation of Li4NiTeO6 [J]. Physical Chemistry Chemical Physics, 2014,16(30): 16145-16149.
    [31]
    HUANG W, TAO S, ZHOU J, et al. Phase separations in LiFe1-xMnxPO4: A random stack model for efficient cathode materials [J]. The Journal of Physical Chemistry C, 2013, 118(2): 796-803.
    [32]
    YABUUCHI N, LU Y C, MANSOUR A N, et al. The influence of heat-treatment temperature on the cation distribution of LiNi0.5Mn0.5O2 and its rate capability in lithium rechargeable batteries [J]. Journal of The Electrochemical Society, 2011,158(2):A192-A200.
    [33]
    YABUUCHI N, YOSHII K, MYUNG S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3- LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
    [34]
    HONG J, LIM H D, LEE M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries [J]. Chemistry of Materials, 2012, 24(14): 2692-2697.)

    Article Metrics

    Article views (43) PDF downloads(125)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return