[1] |
GAGLIO S, RE G L, MORANA M. A framework for real-time Twitter data analysis[J]. Computer Communications, 2016, 73: 236-242.
|
[2] |
FUNG G P C, YU J X, YU P S, et al. Parameter free bursty events detection in text streams[C]// Proceedings of the 31st International Conference on Very large Data Bases. Trondheim, Norway: VLDB Endowment, 2005: 181-192.
|
[3] |
DIAO Q M, JIANG J, ZHU F D, et al. Finding bursty topics from microblogs[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: Association for Computational Linguistics, 2012: 536-544.
|
[4] |
于海峰, 王延章, 卢小丽, 等. 基于知识元的突发事件风险熵预测模型研究[J]. 系统工程学报, 2016, 31(1): 117-126.YU Haifeng, WANG Yanzhang, LU Xiaoli, et al. Emergency risk entropy forecasting model based on knowledge element[J]. Journal of Systems Engineering, 2016, 31(1): 117-126.
|
[5] |
KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397.
|
[6] |
CHEN Y, YANG S, CHENG X Q. Bursty topics extraction for web forums[C]// Proceedings of the 11th International Workshop on Web Information and Data Management. Hong Kong, China: ACM Press, 2009: 55-58.
|
[7] |
HE D, PARKER D S. Topic momentums: An alternative model of bursts in streams of topics[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D C, USA: ACM Press, 2010: 443-452.
|
[8] |
贺敏, 杜攀, 张瑾,等. 基于动量模型的微博突发话题检测方法[J]. 计算机研究与发展, 2015, 52(5): 1022-1028.HE Min, DU Pan, ZHANG Jin, et al. Microblog bursty topic detection method based on momentum model[J]. Journal of Computer Research and Development, 2015, 52(5): 1022-1028.
|
[9] |
HE D, PARKER D S. Learning the funding momentum of research projects[J]. Knowledge Discovery and Data Mining, 2011, 6635(2):532-543.
|
[10] |
DU Y, HE Y, TIAN Y, et al. Microblog bursty topic detection based on user relationship[C]// Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference. Chongqing, China: IEEE Press, 2011, 1: 260-263.
|
[11] |
王征, 王林森, 赵磊. 基于信息密度的微博突发话题检测模型研究[J]. 情报理论与实践, 2016, 39(3): 125-129.
|
[12] |
申国伟, 杨武, 王巍,等. 面向大规模微博消息流的突发话题检测[J]. 计算机研究与发展, 2015, 52(2): 512-521.SHEN Guowei, YANG Wu, WANG Wei, et al. Burst topic detection oriented large-scale microblogs streams[J]. Journal of Computer Research and Development, 2015, 52(2): 512-521.
|
[13] |
贺敏, 徐杰, 杜攀, 等. 基于时间序列分析的微博突发话题检测方法[J]. 通信学报, 2016, 37(3): 48-54.HE Min, XU Jie, DU Pan, et al. Bursty topic detection method for microblog based on time series analysis[J]. Journal on Communications, 2016, 37(3): 48-54.
|
[14] |
郭跇秀, 吕学强, 李卓. 基于突发词聚类的微博突发事件检测方法[J]. 计算机应用, 2014, 34(2): 486-490, 505.GUO Yixiu, LYN Xueqiang, LI Zhuo. Bursty topics detection approach on Chinese microblog based on burst words clustering[J]. Journal of Computer Applications, 2014, 34(2): 486-490, 505.
|
[15] |
徐志明, 李栋, 刘挺, 等. 微博用户的相似性度量及其应用[J]. 计算机学报, 2014, 37(1): 207-218.XU Zhiming, LI Dong, LIU Ting, et al. Measuring similarity between microblog users and its application[J]. Chinese Journal of Computers, 2014, 37(1): 207-218.
|
[16] |
毛佳昕, 刘奕群, 张敏, 等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014, 37(4): 791-800.MAO Jiaxin, LIU Yiqun ZHANG Min, et al. Social influence analysis for micro-blog user based on user behavior[J]. Chinese Journal of Computers, 2014, 37(4): 791-800.
|
[17] |
陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013, 36(2): 349-359.CHEN Kehan, HAN Panpan, WU Jian. User clustering based social network recommendation[J]. Chinese Journal of Computers, 2013, 36(2): 349-359.
|
[1] |
GAGLIO S, RE G L, MORANA M. A framework for real-time Twitter data analysis[J]. Computer Communications, 2016, 73: 236-242.
|
[2] |
FUNG G P C, YU J X, YU P S, et al. Parameter free bursty events detection in text streams[C]// Proceedings of the 31st International Conference on Very large Data Bases. Trondheim, Norway: VLDB Endowment, 2005: 181-192.
|
[3] |
DIAO Q M, JIANG J, ZHU F D, et al. Finding bursty topics from microblogs[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: Association for Computational Linguistics, 2012: 536-544.
|
[4] |
于海峰, 王延章, 卢小丽, 等. 基于知识元的突发事件风险熵预测模型研究[J]. 系统工程学报, 2016, 31(1): 117-126.YU Haifeng, WANG Yanzhang, LU Xiaoli, et al. Emergency risk entropy forecasting model based on knowledge element[J]. Journal of Systems Engineering, 2016, 31(1): 117-126.
|
[5] |
KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397.
|
[6] |
CHEN Y, YANG S, CHENG X Q. Bursty topics extraction for web forums[C]// Proceedings of the 11th International Workshop on Web Information and Data Management. Hong Kong, China: ACM Press, 2009: 55-58.
|
[7] |
HE D, PARKER D S. Topic momentums: An alternative model of bursts in streams of topics[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D C, USA: ACM Press, 2010: 443-452.
|
[8] |
贺敏, 杜攀, 张瑾,等. 基于动量模型的微博突发话题检测方法[J]. 计算机研究与发展, 2015, 52(5): 1022-1028.HE Min, DU Pan, ZHANG Jin, et al. Microblog bursty topic detection method based on momentum model[J]. Journal of Computer Research and Development, 2015, 52(5): 1022-1028.
|
[9] |
HE D, PARKER D S. Learning the funding momentum of research projects[J]. Knowledge Discovery and Data Mining, 2011, 6635(2):532-543.
|
[10] |
DU Y, HE Y, TIAN Y, et al. Microblog bursty topic detection based on user relationship[C]// Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference. Chongqing, China: IEEE Press, 2011, 1: 260-263.
|
[11] |
王征, 王林森, 赵磊. 基于信息密度的微博突发话题检测模型研究[J]. 情报理论与实践, 2016, 39(3): 125-129.
|
[12] |
申国伟, 杨武, 王巍,等. 面向大规模微博消息流的突发话题检测[J]. 计算机研究与发展, 2015, 52(2): 512-521.SHEN Guowei, YANG Wu, WANG Wei, et al. Burst topic detection oriented large-scale microblogs streams[J]. Journal of Computer Research and Development, 2015, 52(2): 512-521.
|
[13] |
贺敏, 徐杰, 杜攀, 等. 基于时间序列分析的微博突发话题检测方法[J]. 通信学报, 2016, 37(3): 48-54.HE Min, XU Jie, DU Pan, et al. Bursty topic detection method for microblog based on time series analysis[J]. Journal on Communications, 2016, 37(3): 48-54.
|
[14] |
郭跇秀, 吕学强, 李卓. 基于突发词聚类的微博突发事件检测方法[J]. 计算机应用, 2014, 34(2): 486-490, 505.GUO Yixiu, LYN Xueqiang, LI Zhuo. Bursty topics detection approach on Chinese microblog based on burst words clustering[J]. Journal of Computer Applications, 2014, 34(2): 486-490, 505.
|
[15] |
徐志明, 李栋, 刘挺, 等. 微博用户的相似性度量及其应用[J]. 计算机学报, 2014, 37(1): 207-218.XU Zhiming, LI Dong, LIU Ting, et al. Measuring similarity between microblog users and its application[J]. Chinese Journal of Computers, 2014, 37(1): 207-218.
|
[16] |
毛佳昕, 刘奕群, 张敏, 等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014, 37(4): 791-800.MAO Jiaxin, LIU Yiqun ZHANG Min, et al. Social influence analysis for micro-blog user based on user behavior[J]. Chinese Journal of Computers, 2014, 37(4): 791-800.
|
[17] |
陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013, 36(2): 349-359.CHEN Kehan, HAN Panpan, WU Jian. User clustering based social network recommendation[J]. Chinese Journal of Computers, 2013, 36(2): 349-359.
|