ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

The maximum electricity efficiency of hydrogen fueled fuel cell system

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2016.12.005
  • Received Date: 24 May 2016
  • Accepted Date: 10 September 2016
  • Rev Recd Date: 10 September 2016
  • Publish Date: 30 December 2016
  • Based on the fundamental definition of the electrical efficiency and the thermodynamics principle, a theoretical expression for the maximum electricity efficiency of a fuel cell system was derived. The characteristics of cell voltage operating at the maximum electrical efficiency and the energy required for heating the fuel and air were considered in deriving the maximum electricity efficiency expression. The values of the maximum electricity efficiency for hydrogen fuel at different operating temperatures were presented. The relationships between the maximum electricity efficiency and the working temperature, fuel utilization and the fuel steam content were analyzed.
    Based on the fundamental definition of the electrical efficiency and the thermodynamics principle, a theoretical expression for the maximum electricity efficiency of a fuel cell system was derived. The characteristics of cell voltage operating at the maximum electrical efficiency and the energy required for heating the fuel and air were considered in deriving the maximum electricity efficiency expression. The values of the maximum electricity efficiency for hydrogen fuel at different operating temperatures were presented. The relationships between the maximum electricity efficiency and the working temperature, fuel utilization and the fuel steam content were analyzed.
  • loading
  • [1]
    FIELDS G M, METZNER R G. Hybrid car with electric and heat engine: U.S. Patent 4,351,405[P]. 1982-9-28.
    [2]
    BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399(6734): 335-338.
    [3]
    CEPERLEY P H. Gain and efficiency of a short traveling wave heat engine[J]. The Journal of the Acoustical Society of America, 1985, 77(3): 1 239-1 244.
    [4]
    严子浚. 卡诺热机的最佳效率与功率间的关系[J]. 工程热物理学报, 1985, 6(1): 1-5.
    YAN Zijun. The relation between optimal efficiency and power of a Carnot heat engine[J]. Journal of Engineering Thermophysics, 1985, 6(1): 1-5.
    [5]
    MCGINNIS R L, MCCUTCHEON J R, ELIMELECH M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1): 13-19.
    [6]
    CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 231-233.
    [7]
    LARMINIE J, DICKS A, MCDONALD M S. Fuel Cell Systems Explained[M]. New York: Wiley, 2003: 5-6.
    [8]
    STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
    [9]
    侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2011, 18(1): 1-13.
    HOU Ming, YI Baolian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2011, 18(1): 1-13.
    [10]
    LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2 369-2 376.
    [11]
    于兴文, 黄学杰, 陈立泉. 固体氧化物燃料电池研究进展[J]. 电池, 2002, 32(2): 110-112.
    YUXingwen, HUANG Xuejie, CHEN Liquan. Development of solid oxide fuel cells[J]. Battery Bimonthly, 2002, 32(2): 110-112.
    [12]
    NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2 337-2 354.
    [13]
    SCHILLER G, ANSAR A, LANG M, et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC)[J]. Journal of Applied Electrochemistry, 2009, 39(2): 293-301.
    [14]
    娄马宝. 低热值气体燃料 (包括高炉煤气) 的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18.
    [15]
    王宝轩.碳基固体氧化物燃料电池理论研究与多物理场模拟[D]. 合肥:中国科学技术大学,2013.
    [16]
    WOOD D L, JUNG S Y, NGUYEN T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 1998, 43(24): 3 795-3 809.
    [17]
    姚春德, 夏琦, 陈绪平, 等. 柴油在甲醇氛围中高效清洁燃烧机理[J]. 天津大学学报, 2011, 44(8): 671-676.
    YAO Chunde,XIA Qi,CHEN Xuping, et al. Mechanism of diesel fuel burning in methanol mixture with high efficiency and low emission[J]. Journal of Tianjin University, 2011, 44(8): 671-676.
    [18]
    VANCOILLIE J, DEMUYNCK J, SILEGHEM L, et al. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline-engine efficiency study[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9 914-9 924.
  • 加载中

Catalog

    [1]
    FIELDS G M, METZNER R G. Hybrid car with electric and heat engine: U.S. Patent 4,351,405[P]. 1982-9-28.
    [2]
    BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399(6734): 335-338.
    [3]
    CEPERLEY P H. Gain and efficiency of a short traveling wave heat engine[J]. The Journal of the Acoustical Society of America, 1985, 77(3): 1 239-1 244.
    [4]
    严子浚. 卡诺热机的最佳效率与功率间的关系[J]. 工程热物理学报, 1985, 6(1): 1-5.
    YAN Zijun. The relation between optimal efficiency and power of a Carnot heat engine[J]. Journal of Engineering Thermophysics, 1985, 6(1): 1-5.
    [5]
    MCGINNIS R L, MCCUTCHEON J R, ELIMELECH M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1): 13-19.
    [6]
    CHA S W, COLELLA W, PRINZ F B. Fuel Cell Fundamentals[M]. New York: John Wiley & Sons, 2006: 231-233.
    [7]
    LARMINIE J, DICKS A, MCDONALD M S. Fuel Cell Systems Explained[M]. New York: Wiley, 2003: 5-6.
    [8]
    STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
    [9]
    侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2011, 18(1): 1-13.
    HOU Ming, YI Baolian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2011, 18(1): 1-13.
    [10]
    LIN R, LI B, HOU Y P, et al. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2 369-2 376.
    [11]
    于兴文, 黄学杰, 陈立泉. 固体氧化物燃料电池研究进展[J]. 电池, 2002, 32(2): 110-112.
    YUXingwen, HUANG Xuejie, CHEN Liquan. Development of solid oxide fuel cells[J]. Battery Bimonthly, 2002, 32(2): 110-112.
    [12]
    NI M, LEUNG M K H, LEUNG D Y C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2 337-2 354.
    [13]
    SCHILLER G, ANSAR A, LANG M, et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC)[J]. Journal of Applied Electrochemistry, 2009, 39(2): 293-301.
    [14]
    娄马宝. 低热值气体燃料 (包括高炉煤气) 的利用[J]. 燃气轮机技术, 2000, 13(3): 16-18.
    [15]
    王宝轩.碳基固体氧化物燃料电池理论研究与多物理场模拟[D]. 合肥:中国科学技术大学,2013.
    [16]
    WOOD D L, JUNG S Y, NGUYEN T V. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 1998, 43(24): 3 795-3 809.
    [17]
    姚春德, 夏琦, 陈绪平, 等. 柴油在甲醇氛围中高效清洁燃烧机理[J]. 天津大学学报, 2011, 44(8): 671-676.
    YAO Chunde,XIA Qi,CHEN Xuping, et al. Mechanism of diesel fuel burning in methanol mixture with high efficiency and low emission[J]. Journal of Tianjin University, 2011, 44(8): 671-676.
    [18]
    VANCOILLIE J, DEMUYNCK J, SILEGHEM L, et al. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline-engine efficiency study[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9 914-9 924.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return