[1] |
姚健晖, 郑宇鹏, 姚雪彪. 纺锤体检验点的功能与染色体不稳定性[J].科学通报,2002,47(2):81-87.
|
[2] |
Lou Y, Yao J, Zereshki A, et al. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling[J]. Journal of Biological Chemistry,2004,279:20 049-20 057.
|
[3] |
Yao J, Fu C, Ding X, et al. Nek2A kinase regulates the localization of numatrin to centrosome in mitosis[J]. FEBS Letters,2004, 575: 112-118.
|
[4] |
Fu G, Ding X, Yuan K, et al. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis[J]. Cell Res, 2007,17(7):608-618.
|
[5] |
Du J, Cai X, Yao J, et al. The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability[J]. Oncogene,2008, 27:4 107-4 114.
|
[6] |
Ke Y, Dou Z, Zhang J, et al. Function and regulation of Aurora/Ipl1p kinase family in cell division[J]. Cell Res,2003,13: 69-81.
|
[7] |
Yang Y, Wu F, Ward T, et al. Phosphorylation of HsMis13 by aurora B is essential for assembly of functional kinetochore[J]. Journal of Biological Chemistry, 2008, doi: 10.1074/jbc.M804207200.
|
[8] |
Xue Y, Zhou F, Lu H, et al. GPS: a comprehensive www server for phosphorylation sites prediction[J]. Nucleic Acids Research,2005, 33:W184-187.
|
[9] |
Zhou F, Xue Y, Yao X, et al. A general user interface for prediction servers of proteins post-translational modification sites[J]. Nature Protocol, 2006,1(3):1 318-1 321.
|
[10] |
Xue Y, Ren J, Gao X, et al. GPS 20: Prediction of kinase-specific phosphorylation sites in hierarchy[J]. Mol Cell Proteomics,2008,doi: 10.1074/mcp.M700574-MCP200/18463090.
|
[11] |
Zhang J, Dou Z, Miao Y, et al. TTK is a kinetochore-associated spindle checkpoint kinase and co-localized with CENP-E[J]. Science Bulletin,2002, 27:213-219.
|
[12] |
Dou Z, Sawagechi A, Zhang J, et al. Dynamic distribution of TTK in HeLa cells: insights from an ultrastructural study[J]. Cell Research, 2003,13: 443-449.
|
[13] |
Dou Z, Ding X, Zereshki A, et al. TTK kinase is essential for the centrosomal localization of TACC2[J]. FEBS Letters, 2004,572:51-56.
|
[14] |
Yao X, Zheng Y, Sullivan K F, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint[J]. Nature Cell Biology,2000,2:484-491.
|
[15] |
Yao X, Anderson K L, Cleveland D W. The microtubule-dependent motor centromere-associated protein E (CENP-E) an integral component of kinetochore corona fibers that link centromeres to spindle microtubules[J]. J Cell Biol,1997,139:435-447.
|
[16] |
Zhu M, Wang F, Yan F, et al. Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization[J]. Journal of Biological Chemistry, 2008,283(27):18 916-18 925.
|
[17] |
Liu D, Ding X, Du J, et al. Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment[J]. Journal of Biological Chemistry, 2007,282(29):21 415-21 424.
|
[18] |
Wang H, Hu X, Ding X, et al. Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling[J]. Journal of Biological Chemistry,2004,279: 54 590-54 598.
|
[19] |
Yao X, Forte J G. Cell biology of acid secretion by parietal cells[J]. Ann Rev Physiol, 2003,65:103-131.
|
[20] |
Zhou R, Cao X, Watson C, et al. Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation[J]. Journal of Biological Chemistry, 2003,278: 35 651-35 659.
|
[21] |
Cao X, Ding X, Guo Z, et al. PALS1 specifies the localization of ezrin to the apical membrane of gastric parietal cells[J]. Journal of Biological Chemistry, 2005,280: 13 584-13 592.
|
[22] |
Liu D, Ge L, Wang F, et al. Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation[J]. FEBS Lett, 2007,581(18):3 563-3 571.
|
[23] |
Wang F, Xia P, Wu F, et al. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells[J]. Journal of Biological Chemistry, 2008,doi: 10.1074/jbc.M80057200.
|
[24] |
Fang Z, Miao Y, Ding X, et al. Proteomic identification and functional characterization of a novel ARF6 GTPase-activating protein ACAP4[J]. Mol & Cell Proteomics,2006,5:1 437-1 449.
|
[25] |
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006,313:1 642-1 645.
|
[26] |
Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008,319:810-813.
|
[27] |
Bates M, Wang B, Dumpsey G P T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007,317:1 749-1 753.
|
[1] |
姚健晖, 郑宇鹏, 姚雪彪. 纺锤体检验点的功能与染色体不稳定性[J].科学通报,2002,47(2):81-87.
|
[2] |
Lou Y, Yao J, Zereshki A, et al. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling[J]. Journal of Biological Chemistry,2004,279:20 049-20 057.
|
[3] |
Yao J, Fu C, Ding X, et al. Nek2A kinase regulates the localization of numatrin to centrosome in mitosis[J]. FEBS Letters,2004, 575: 112-118.
|
[4] |
Fu G, Ding X, Yuan K, et al. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis[J]. Cell Res, 2007,17(7):608-618.
|
[5] |
Du J, Cai X, Yao J, et al. The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability[J]. Oncogene,2008, 27:4 107-4 114.
|
[6] |
Ke Y, Dou Z, Zhang J, et al. Function and regulation of Aurora/Ipl1p kinase family in cell division[J]. Cell Res,2003,13: 69-81.
|
[7] |
Yang Y, Wu F, Ward T, et al. Phosphorylation of HsMis13 by aurora B is essential for assembly of functional kinetochore[J]. Journal of Biological Chemistry, 2008, doi: 10.1074/jbc.M804207200.
|
[8] |
Xue Y, Zhou F, Lu H, et al. GPS: a comprehensive www server for phosphorylation sites prediction[J]. Nucleic Acids Research,2005, 33:W184-187.
|
[9] |
Zhou F, Xue Y, Yao X, et al. A general user interface for prediction servers of proteins post-translational modification sites[J]. Nature Protocol, 2006,1(3):1 318-1 321.
|
[10] |
Xue Y, Ren J, Gao X, et al. GPS 20: Prediction of kinase-specific phosphorylation sites in hierarchy[J]. Mol Cell Proteomics,2008,doi: 10.1074/mcp.M700574-MCP200/18463090.
|
[11] |
Zhang J, Dou Z, Miao Y, et al. TTK is a kinetochore-associated spindle checkpoint kinase and co-localized with CENP-E[J]. Science Bulletin,2002, 27:213-219.
|
[12] |
Dou Z, Sawagechi A, Zhang J, et al. Dynamic distribution of TTK in HeLa cells: insights from an ultrastructural study[J]. Cell Research, 2003,13: 443-449.
|
[13] |
Dou Z, Ding X, Zereshki A, et al. TTK kinase is essential for the centrosomal localization of TACC2[J]. FEBS Letters, 2004,572:51-56.
|
[14] |
Yao X, Zheng Y, Sullivan K F, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint[J]. Nature Cell Biology,2000,2:484-491.
|
[15] |
Yao X, Anderson K L, Cleveland D W. The microtubule-dependent motor centromere-associated protein E (CENP-E) an integral component of kinetochore corona fibers that link centromeres to spindle microtubules[J]. J Cell Biol,1997,139:435-447.
|
[16] |
Zhu M, Wang F, Yan F, et al. Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization[J]. Journal of Biological Chemistry, 2008,283(27):18 916-18 925.
|
[17] |
Liu D, Ding X, Du J, et al. Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment[J]. Journal of Biological Chemistry, 2007,282(29):21 415-21 424.
|
[18] |
Wang H, Hu X, Ding X, et al. Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling[J]. Journal of Biological Chemistry,2004,279: 54 590-54 598.
|
[19] |
Yao X, Forte J G. Cell biology of acid secretion by parietal cells[J]. Ann Rev Physiol, 2003,65:103-131.
|
[20] |
Zhou R, Cao X, Watson C, et al. Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation[J]. Journal of Biological Chemistry, 2003,278: 35 651-35 659.
|
[21] |
Cao X, Ding X, Guo Z, et al. PALS1 specifies the localization of ezrin to the apical membrane of gastric parietal cells[J]. Journal of Biological Chemistry, 2005,280: 13 584-13 592.
|
[22] |
Liu D, Ge L, Wang F, et al. Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation[J]. FEBS Lett, 2007,581(18):3 563-3 571.
|
[23] |
Wang F, Xia P, Wu F, et al. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells[J]. Journal of Biological Chemistry, 2008,doi: 10.1074/jbc.M80057200.
|
[24] |
Fang Z, Miao Y, Ding X, et al. Proteomic identification and functional characterization of a novel ARF6 GTPase-activating protein ACAP4[J]. Mol & Cell Proteomics,2006,5:1 437-1 449.
|
[25] |
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006,313:1 642-1 645.
|
[26] |
Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008,319:810-813.
|
[27] |
Bates M, Wang B, Dumpsey G P T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007,317:1 749-1 753.
|