ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Study on ultra-low-field nuclear magnetic resonance spectroscopy based on high-sensitivity atomic magnetometer

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.08.014
  • Received Date: 29 June 2020
  • Accepted Date: 14 July 2020
  • Rev Recd Date: 14 July 2020
  • Publish Date: 31 August 2020
  • The frequency of the spectral line and the splitting rule under the ultra-low magnetic field were theoretically given. Then, using the home-built ultra-low-field NMR spectrometer based on a high-sensitivity atomic magnetometer, an experimental study on ultra-low-field NMR spectroscopy was carried out. Taking a typical AXn-type organic molecule as an example, the J-coupling spectra under zero magnetic field was measured and the J-coupling parameters were accurately obtained by combining a theoretical analysis in a variety of organic molecules. For chemical samples with the same spectral structure under zero magnetic field, by applying a weak static magnetic field (nT) to the samples, it was observed that different samples have a unique ultra-low field NMR spectral splitting, which can be used as the "fingerprinting" of the sample to identify them.
    The frequency of the spectral line and the splitting rule under the ultra-low magnetic field were theoretically given. Then, using the home-built ultra-low-field NMR spectrometer based on a high-sensitivity atomic magnetometer, an experimental study on ultra-low-field NMR spectroscopy was carried out. Taking a typical AXn-type organic molecule as an example, the J-coupling spectra under zero magnetic field was measured and the J-coupling parameters were accurately obtained by combining a theoretical analysis in a variety of organic molecules. For chemical samples with the same spectral structure under zero magnetic field, by applying a weak static magnetic field (nT) to the samples, it was observed that different samples have a unique ultra-low field NMR spectral splitting, which can be used as the "fingerprinting" of the sample to identify them.
  • loading
  • [1]
    汪和生, 王涛, 冯焕清,等. 一种磁共振脑功能成像的头部移动校正方法[J]. 中国科学技术大学学报, 2002,32(5):66-71.
    [2]
    包尚联, 杜江, 高嵩. 核磁共振骨皮质成像关键技术研究进展[J]. 物理学报, 2013(08):521-527.
    [3]
    王丁俐, 梁高林. 9F核磁共振探针用于体外和活细胞内弗林蛋白酶的活性检测[J]. 中国科学技术大学学报, 2015,45(2):112-116.
    [4]
    ALLERHAND A, ADDLEMAN R E, OSMAN D. Ultrahigh resolution NMR. 1. General considerations and preliminary results for carbon-13 NMR[J]. Journal of the American Chemical Society, 1985, 107(20): 5809-5810.
    [5]
    APPELT S, KHN H, et al. Chemical analysis by ultra-high resolution nuclear magnetic resonance in the Earth’s magnetic field[J]. Nature Physics, 2006,2:105-109.
    [6]
    LIU G , LI X , SUN X , et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237:158-163.
    [7]
    THEIS T, GANSSLE P, KERVERN G, et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance[J]. Nature Physics, 2011, 7(7):571-575.
    [8]
    BLANCHARD J W, SJOLANDER T F, KING J P, et al. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance[J]. Physical Review B, 2015, 92(22):220202.
    [9]
    BLANCHARD J W, BUDKER D. Zero-to ultralow-field NMR[C]//eMagRes. Hoboken, NJ:Wiley, 2016.
    [10]
    陈伯韬, 江敏, 季云兰,等. 用于零场核磁共振探测的无自旋交换弛豫原子磁力仪[J]. 中国激光, 2017(10):118-128.
    [11]
    MCDERMOTT R. Liquid-state NMR and scalar couplings in microtesla magnetic fields[J]. Science, 2002, 295(5563):2247-2249.
    [12]
    王成杰, 石发展, 王鹏飞,等. 基于金刚石NV色心的纳米尺度磁场测量和成像技术[J]. 物理学报, 2018, 67(13):16-25.
    [13]
    ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13):130801.
    [14]
    DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110.1-151110.3.
    [15]
    BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 2007,3:227-234.
    [16]
    李曙光, 周翔, 曹晓超,等. 全光学高灵敏度铷原子磁力仪的研究[J]. 物理学报, 2010, 59(2):877-882.
    [17]
    KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932):596-599.
    [18]
    LEDBETTER M P, THEIS T, BLANCHARD J W, et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 2011, 107(10): 107601.
    [19]
    JI Y, BIAN J, JIANG M, et al. Time-optimal control of independent spin-1/2 systems under simultaneous control[J]. Physical Review A, 2018, 98(6):062108.
    [20]
    JIANG M, BIAN J, LIU X,et al. Numerical optimal control of spin systems at zero magnetic field[J]. Physical Review A, 2018, 97(6):062118.
    [21]
    JIANG M, FRUTOS, ROMN PICAZO, WU T, et al. Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance[J]. Physical Review Applied, 2019, 11(2):024005.
    [22]
    JIANG M, WU T, BLANCHARD J W, et al. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance[J]. Science Advances, 2017, 4(6):eaar6327.
    [23]
    APPELT S, HSING F W,SIELING U, et al. Paths from weak to strong coupling in NMR[J]. Physical Review A, 2010, 81(2):023420.
    [24]
    BERNARDING J, BUNTKOWSKY G, MACHOLL S, et al. J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields[J]. Journal of the American Chemical Society, 2006, 128(3): 714-715.
    [25]
    JIANG M , XU W , JI Y , et al. Ultralow-field Nuclear Magnetic Resonance Asymmetric Spectroscopy[DB/OL]. arXiv:1902.08073.
    [26]
    BIAN J, JIANG M, CUI J, et al. Universal quantum control in zero-field nuclear magnetic resonance[J]. Physical Review A, 2017, 95(5): 052342.
    [27]
    LEDBETTER M P, CRAWFORD C W, PINES A, et al. Optical detection of NMR J-spectra at zero magnetic field[J]. Journal of Magnetic Resonance, 2009, 199(1): 25-29.
    [28]
    EMONDTS M, LEDBETTER M P, PUSTELNY S, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field[J]. Physical Review Letters, 2014, 112(7):077601.1-077601.5.
    [29]
    BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661.
    [30]
    TAYLER M C D , THEIS T , SJOLANDER T F , et al. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field[J]. Review of Scientific Instruments, 2017, 88(9):091101.)
  • 加载中

Catalog

    [1]
    汪和生, 王涛, 冯焕清,等. 一种磁共振脑功能成像的头部移动校正方法[J]. 中国科学技术大学学报, 2002,32(5):66-71.
    [2]
    包尚联, 杜江, 高嵩. 核磁共振骨皮质成像关键技术研究进展[J]. 物理学报, 2013(08):521-527.
    [3]
    王丁俐, 梁高林. 9F核磁共振探针用于体外和活细胞内弗林蛋白酶的活性检测[J]. 中国科学技术大学学报, 2015,45(2):112-116.
    [4]
    ALLERHAND A, ADDLEMAN R E, OSMAN D. Ultrahigh resolution NMR. 1. General considerations and preliminary results for carbon-13 NMR[J]. Journal of the American Chemical Society, 1985, 107(20): 5809-5810.
    [5]
    APPELT S, KHN H, et al. Chemical analysis by ultra-high resolution nuclear magnetic resonance in the Earth’s magnetic field[J]. Nature Physics, 2006,2:105-109.
    [6]
    LIU G , LI X , SUN X , et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237:158-163.
    [7]
    THEIS T, GANSSLE P, KERVERN G, et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance[J]. Nature Physics, 2011, 7(7):571-575.
    [8]
    BLANCHARD J W, SJOLANDER T F, KING J P, et al. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance[J]. Physical Review B, 2015, 92(22):220202.
    [9]
    BLANCHARD J W, BUDKER D. Zero-to ultralow-field NMR[C]//eMagRes. Hoboken, NJ:Wiley, 2016.
    [10]
    陈伯韬, 江敏, 季云兰,等. 用于零场核磁共振探测的无自旋交换弛豫原子磁力仪[J]. 中国激光, 2017(10):118-128.
    [11]
    MCDERMOTT R. Liquid-state NMR and scalar couplings in microtesla magnetic fields[J]. Science, 2002, 295(5563):2247-2249.
    [12]
    王成杰, 石发展, 王鹏飞,等. 基于金刚石NV色心的纳米尺度磁场测量和成像技术[J]. 物理学报, 2018, 67(13):16-25.
    [13]
    ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13):130801.
    [14]
    DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110.1-151110.3.
    [15]
    BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 2007,3:227-234.
    [16]
    李曙光, 周翔, 曹晓超,等. 全光学高灵敏度铷原子磁力仪的研究[J]. 物理学报, 2010, 59(2):877-882.
    [17]
    KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932):596-599.
    [18]
    LEDBETTER M P, THEIS T, BLANCHARD J W, et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 2011, 107(10): 107601.
    [19]
    JI Y, BIAN J, JIANG M, et al. Time-optimal control of independent spin-1/2 systems under simultaneous control[J]. Physical Review A, 2018, 98(6):062108.
    [20]
    JIANG M, BIAN J, LIU X,et al. Numerical optimal control of spin systems at zero magnetic field[J]. Physical Review A, 2018, 97(6):062118.
    [21]
    JIANG M, FRUTOS, ROMN PICAZO, WU T, et al. Magnetic gradiometer for the detection of zero- to ultralow-field nuclear magnetic resonance[J]. Physical Review Applied, 2019, 11(2):024005.
    [22]
    JIANG M, WU T, BLANCHARD J W, et al. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance[J]. Science Advances, 2017, 4(6):eaar6327.
    [23]
    APPELT S, HSING F W,SIELING U, et al. Paths from weak to strong coupling in NMR[J]. Physical Review A, 2010, 81(2):023420.
    [24]
    BERNARDING J, BUNTKOWSKY G, MACHOLL S, et al. J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields[J]. Journal of the American Chemical Society, 2006, 128(3): 714-715.
    [25]
    JIANG M , XU W , JI Y , et al. Ultralow-field Nuclear Magnetic Resonance Asymmetric Spectroscopy[DB/OL]. arXiv:1902.08073.
    [26]
    BIAN J, JIANG M, CUI J, et al. Universal quantum control in zero-field nuclear magnetic resonance[J]. Physical Review A, 2017, 95(5): 052342.
    [27]
    LEDBETTER M P, CRAWFORD C W, PINES A, et al. Optical detection of NMR J-spectra at zero magnetic field[J]. Journal of Magnetic Resonance, 2009, 199(1): 25-29.
    [28]
    EMONDTS M, LEDBETTER M P, PUSTELNY S, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field[J]. Physical Review Letters, 2014, 112(7):077601.1-077601.5.
    [29]
    BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661.
    [30]
    TAYLER M C D , THEIS T , SJOLANDER T F , et al. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field[J]. Review of Scientific Instruments, 2017, 88(9):091101.)

    Article Metrics

    Article views (69) PDF downloads(181)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return