ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Simulation of the implantation of slow positron beams into metallic materials based on Geant4

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2020.02.018
  • Received Date: 30 March 2017
  • Accepted Date: 24 May 2017
  • Rev Recd Date: 24 May 2017
  • Publish Date: 28 February 2020
  • The processes of slow positron beam implantation into metals were studied by employing the Geant4 software. The backscattering coefficients of two patterns (i.e. normal incidence and oblique incidence) were calculated, and the distribution curves of positron implantation depth at oblique incidence and the relations between the backscattering coefficient and the incident angle were obtained. Further analysis of lateral diffusions of positrons at different angles was conducted. Simulations indicate that the lateral diffusions of slow positrons become more significant obliquely implanting into metals with smaller atomic numbers. The simulation can provide some useful referential data for the research of metals using slow positron beam technology.
    The processes of slow positron beam implantation into metals were studied by employing the Geant4 software. The backscattering coefficients of two patterns (i.e. normal incidence and oblique incidence) were calculated, and the distribution curves of positron implantation depth at oblique incidence and the relations between the backscattering coefficient and the incident angle were obtained. Further analysis of lateral diffusions of positrons at different angles was conducted. Simulations indicate that the lateral diffusions of slow positrons become more significant obliquely implanting into metals with smaller atomic numbers. The simulation can provide some useful referential data for the research of metals using slow positron beam technology.
  • loading
  • [1]
    韩荣典,叶邦角,翁惠民,等. 慢正电子束技术的应用与发展[J]. 物理学进展, 1999, 19(3): 305-330.
    HAN Rongdian, YE Bangjiao, WENG Huimin, et al. Application and development of slow positron technique[J]. Progress in Physics, 1999, 19(3): 305-330.
    [2]
    SCHULTZ PETER J, LYNN K G. Interaction of positron beams with surfaces, thin films, and interfaces[J]. Rev Mod Phys, 1988, 60(3): 701-779.
    [3]
    BENTABET A, BOUARISSA N.Positron backscattering from an Al target: Analytical calculation and Monte Carlo simulation[J]. Surf Interface Anal, 2007, 39(5): 377-380.
    [4]
    COLEMAN P G, BAKER J A, CHILTON N B. Experimental studies of positron stopping inmatter: The binary sample method[J]. J Phys: Condens Matter, 1993, 5(43): 8117-8128.
    [5]
    ASOKA-KUMAR P, LYNN K G. Implantation profile of low-energy positrons in solids[J]. Appl Phys Lett, 1990, 57(16): 1634-1636.
    [6]
    VALKEALAHTI S, NIEMINEN R M.Monte-Carlo calculations of keV electron and positron slowing down in solids[J]. Appl Phys A, 1983, 32(2): 95-106.
    [7]
    VALKEALAHTI S, NIEMINEN R M. Monte-Carlo calculations of keV electron and positron slowing down in solids. Ⅱ[J]. Appl Phys A, 1984, 35(1): 51-59.
    [8]
    SELIGERH H. The backscattering of positrons and electrons[J]. Phys Rev, 1952, 88(2): 408-412.
    [9]
    BENTABET A, FENINECHE N E.Backscattering coefficients for low energy electrons and positrons impinging on metallic thin lms: Scaling study[J]. Appl Phys A, 2009, 97: 425-430.
    [10]
    MASSOUMI G R, LENNARD W N, SCHULTZ P J, et al. Electron and positron backscattering in the medium-energy range[J]. Phys Rev B, 1993, 47(17): 11007-11018.
    [11]
    MASSOUMI G R, HOZHABRI N, JENSEN K O, et al.Positron and electron backscattering from solids[J]. Phys Rev Lett, 1992, 68(26): 3873-3876.
    [12]
    BAKER J A, CHILTON N B, JENSEN K O, et al.Material dependence of positron implantation depths[J]. Appl Phys Lett, 1991, 59(23): 2962-2964.
    [13]
    AYD1N A. Monte-Carlo calculations of positron implantation profiles in silver and gold[J]. Radiat Phys Chem, 2000, 59(3): 277-280.
    [14]
    RITLEY K A, LYNN K G, GHOSH V J, et al. Low-energy contributions to positron implantation[J]. J Appl Phys, 1993, 74(5): 3479-3496.
    [15]
    ALI E S M, ROGERS D W O. Benchmarking EGSnrc in the kilovoltage energy range against experimental measurements of charged particle backscatter coefficients[J]. Phys Med Biol, 2008, 53(6): 1527-1543.
    [16]
    ALI E S M, ROGERS D W O.Energy spectra and angular distributions of charged particles backscattered from solid targets[J]. J Phys D: Appl Phys, 2008, 41(5): 055505.
    [17]
    DRYZEK J, HORODEKP. GEANT4 simulation of slow positron beam implantation proles[J]. Nucl Instrum Method Phys Res B: Beam Interactions with Materials and Atoms, 2008, 266(18): 4000-4009.
    [18]
    DRYZEK J, SIEMEK K.The “accumulation effect” of positrons in the stack of foils, detected by measurements of the positron implantation profile[J]. J Appl Phys, 2013, 114(22): 224901.
    [19]
    NING Xia, CAO Xingzhong, LI Chong, et al.Modication of source contribution in PALS by simulation using Geant4 code[J]. Nucl Instrum Method Phys Res B: Beam Interactions with Materials and Atoms, 2017, 397:75-81.
    [20]
    BENTABET A, FENINECHE N E, LOUCIF K.A comparative study between slow electrons and positrons transport in solid thin lms[J]. Appl Surf Sci, 2009, 255:7580-7585.
    [21]
    GLAZOV L G,PZSIT I. Applications of invariant embedding: Positron backscattering from surfaces[J]. Nucl Instrum Method Phys Res B, 2004, 215(3-4): 509-524.
    [22]
    MASSOUMI G R, HOZHABRI N, LENNARD W N, et al. Doubly differential positron-backscattering yields[J]. Phys Rev B, 1991, 44(7): 3486-3489.
    [23]
    COLEMAN P G, ALBRECHT L, JENSEN K O, et al. Positron backscattering from elemental solids[J]. J Phys: Condes Matter, 1992, 4(50): 10311-10322.
    [24]
    BAKER J A, COLEMAN P G. Measurement of coefficients for the back-scattering of 0.5-30 keV positrons from metallic surfaces[J]. J Phys C: Solid State Phys, 1988, 21(23): L875-L880.
    [25]
    BAKER J A, CHILTON N B, JENSEN K O, et al. Median penetration depths and implantation profiles for low energy positrons in Al[J]. J Phys: Condens Matter, 1991, 3(22): 4109-4114.
    [26]
    MAKINEN J, PALKO S, MARTIKAINEN J, et al.Positron backscattering probabilities from solid surfaces at 2-30 keV[J]. J Phys: Condens Matter, 1992, 4(36): L503-L508.
    [27]
    BAKER J A, CHILTON N B, COLEMAN P G.Stopping of 10-50 keV positrons in aluminum[J]. Appl Phys Lett, 1991, 59(2):164-166.
    [28]
    AGOSTINELLI S, ALLISON J, AMAKO K, et al.Geant4: A simulation toolkit[J]. Nucl Instrum Method Phys Res A, 2003, 506(3): 250-303.
    [29]
    HUANG Shijuan, PAN Ziwen, LIU Jiandang, et al. Simulation of positron backscattering and implantation proles using Geant4 code[J]. Chin Phys B, 2015, 24(10):107803.
    [30]
    LAI Xin, JIANG Xiaopan, CAO Xingzhong, et al. Simulation of positron backscattering on Al, Cu, Ag and Au targets using GEANT4 code[J]. Surf Interface Anal, 2016, 49(5):457-463.
    [31]
    CHAOUI Z, BOUARISSA N.Positron and electron backscattering from elemental solids in the 1-10 keV energy range[J]. J Phys: Condens Matter, 2004, 16(6):799-808.
  • 加载中

Catalog

    [1]
    韩荣典,叶邦角,翁惠民,等. 慢正电子束技术的应用与发展[J]. 物理学进展, 1999, 19(3): 305-330.
    HAN Rongdian, YE Bangjiao, WENG Huimin, et al. Application and development of slow positron technique[J]. Progress in Physics, 1999, 19(3): 305-330.
    [2]
    SCHULTZ PETER J, LYNN K G. Interaction of positron beams with surfaces, thin films, and interfaces[J]. Rev Mod Phys, 1988, 60(3): 701-779.
    [3]
    BENTABET A, BOUARISSA N.Positron backscattering from an Al target: Analytical calculation and Monte Carlo simulation[J]. Surf Interface Anal, 2007, 39(5): 377-380.
    [4]
    COLEMAN P G, BAKER J A, CHILTON N B. Experimental studies of positron stopping inmatter: The binary sample method[J]. J Phys: Condens Matter, 1993, 5(43): 8117-8128.
    [5]
    ASOKA-KUMAR P, LYNN K G. Implantation profile of low-energy positrons in solids[J]. Appl Phys Lett, 1990, 57(16): 1634-1636.
    [6]
    VALKEALAHTI S, NIEMINEN R M.Monte-Carlo calculations of keV electron and positron slowing down in solids[J]. Appl Phys A, 1983, 32(2): 95-106.
    [7]
    VALKEALAHTI S, NIEMINEN R M. Monte-Carlo calculations of keV electron and positron slowing down in solids. Ⅱ[J]. Appl Phys A, 1984, 35(1): 51-59.
    [8]
    SELIGERH H. The backscattering of positrons and electrons[J]. Phys Rev, 1952, 88(2): 408-412.
    [9]
    BENTABET A, FENINECHE N E.Backscattering coefficients for low energy electrons and positrons impinging on metallic thin lms: Scaling study[J]. Appl Phys A, 2009, 97: 425-430.
    [10]
    MASSOUMI G R, LENNARD W N, SCHULTZ P J, et al. Electron and positron backscattering in the medium-energy range[J]. Phys Rev B, 1993, 47(17): 11007-11018.
    [11]
    MASSOUMI G R, HOZHABRI N, JENSEN K O, et al.Positron and electron backscattering from solids[J]. Phys Rev Lett, 1992, 68(26): 3873-3876.
    [12]
    BAKER J A, CHILTON N B, JENSEN K O, et al.Material dependence of positron implantation depths[J]. Appl Phys Lett, 1991, 59(23): 2962-2964.
    [13]
    AYD1N A. Monte-Carlo calculations of positron implantation profiles in silver and gold[J]. Radiat Phys Chem, 2000, 59(3): 277-280.
    [14]
    RITLEY K A, LYNN K G, GHOSH V J, et al. Low-energy contributions to positron implantation[J]. J Appl Phys, 1993, 74(5): 3479-3496.
    [15]
    ALI E S M, ROGERS D W O. Benchmarking EGSnrc in the kilovoltage energy range against experimental measurements of charged particle backscatter coefficients[J]. Phys Med Biol, 2008, 53(6): 1527-1543.
    [16]
    ALI E S M, ROGERS D W O.Energy spectra and angular distributions of charged particles backscattered from solid targets[J]. J Phys D: Appl Phys, 2008, 41(5): 055505.
    [17]
    DRYZEK J, HORODEKP. GEANT4 simulation of slow positron beam implantation proles[J]. Nucl Instrum Method Phys Res B: Beam Interactions with Materials and Atoms, 2008, 266(18): 4000-4009.
    [18]
    DRYZEK J, SIEMEK K.The “accumulation effect” of positrons in the stack of foils, detected by measurements of the positron implantation profile[J]. J Appl Phys, 2013, 114(22): 224901.
    [19]
    NING Xia, CAO Xingzhong, LI Chong, et al.Modication of source contribution in PALS by simulation using Geant4 code[J]. Nucl Instrum Method Phys Res B: Beam Interactions with Materials and Atoms, 2017, 397:75-81.
    [20]
    BENTABET A, FENINECHE N E, LOUCIF K.A comparative study between slow electrons and positrons transport in solid thin lms[J]. Appl Surf Sci, 2009, 255:7580-7585.
    [21]
    GLAZOV L G,PZSIT I. Applications of invariant embedding: Positron backscattering from surfaces[J]. Nucl Instrum Method Phys Res B, 2004, 215(3-4): 509-524.
    [22]
    MASSOUMI G R, HOZHABRI N, LENNARD W N, et al. Doubly differential positron-backscattering yields[J]. Phys Rev B, 1991, 44(7): 3486-3489.
    [23]
    COLEMAN P G, ALBRECHT L, JENSEN K O, et al. Positron backscattering from elemental solids[J]. J Phys: Condes Matter, 1992, 4(50): 10311-10322.
    [24]
    BAKER J A, COLEMAN P G. Measurement of coefficients for the back-scattering of 0.5-30 keV positrons from metallic surfaces[J]. J Phys C: Solid State Phys, 1988, 21(23): L875-L880.
    [25]
    BAKER J A, CHILTON N B, JENSEN K O, et al. Median penetration depths and implantation profiles for low energy positrons in Al[J]. J Phys: Condens Matter, 1991, 3(22): 4109-4114.
    [26]
    MAKINEN J, PALKO S, MARTIKAINEN J, et al.Positron backscattering probabilities from solid surfaces at 2-30 keV[J]. J Phys: Condens Matter, 1992, 4(36): L503-L508.
    [27]
    BAKER J A, CHILTON N B, COLEMAN P G.Stopping of 10-50 keV positrons in aluminum[J]. Appl Phys Lett, 1991, 59(2):164-166.
    [28]
    AGOSTINELLI S, ALLISON J, AMAKO K, et al.Geant4: A simulation toolkit[J]. Nucl Instrum Method Phys Res A, 2003, 506(3): 250-303.
    [29]
    HUANG Shijuan, PAN Ziwen, LIU Jiandang, et al. Simulation of positron backscattering and implantation proles using Geant4 code[J]. Chin Phys B, 2015, 24(10):107803.
    [30]
    LAI Xin, JIANG Xiaopan, CAO Xingzhong, et al. Simulation of positron backscattering on Al, Cu, Ag and Au targets using GEANT4 code[J]. Surf Interface Anal, 2016, 49(5):457-463.
    [31]
    CHAOUI Z, BOUARISSA N.Positron and electron backscattering from elemental solids in the 1-10 keV energy range[J]. J Phys: Condens Matter, 2004, 16(6):799-808.

    Article Metrics

    Article views (40) PDF downloads(95)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return