ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Synthesis and characterization of sodium and potassium iminopyrrol-1-ides and their catalysis toward the ring-opening polymerization of rac-lactide

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.12.002
  • Received Date: 10 April 2017
  • Rev Recd Date: 24 May 2017
  • Publish Date: 30 December 2017
  • Reaction of 2-(R2N=CH)-5-R-C4H2NH (H
    Reaction of 2-(R2N=CH)-5-R-C4H2NH (H
  • loading
  • [1]
    RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311: 484-489.
    [2]
    INKINEN S, HAKKARAINEN M, ALBERTSSONA C, et al. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12: 523-532.
    [3]
    STANFORD M J, DOVEA P. Stereocontrolled ring-opening polymerisation of lactide[J]. Chem Soc Rev, 2010, 39: 486-494.
    [4]
    AJELLAL N, CARPENTIER JF, GUILLAUME C, et al. Metal-catalyzed immortal ring opening polymerization of lactones, lactides and cyclic carbonates[J]. Dalton Trans, 2010, 39: 8363-8376.
    [5]
    DIJKSTRA P J, DU H, FEIJENJ. Single site catalysts for stereoselective ring-opening polymerization of lactides[J]. Polym Chem, 2011, 2: 520-527.
    [6]
    DOVE A P, GIBSON V C, MARSHALL E L, et al. A well defined tin(II) initiator for the living polymerisation of lactide[J]. Chem Commun, 2001,3(3): 283-284.
    [7]
    NIMITSIRIWAT N, GIBSON V C, MARSHALL E L, et al. tert-Butylamidinate tin(II) complexes: High activity, single-site initiators for the controlled production of polylactide[J]. Dalton Trans, 2007, 251(39):4464-4471.
    [8]
    WANG L, POIRIER V, GHIOTTO F, et al. Kinetic analysis of the immortal ring-opening polymerization of cyclic esters: A case study with Ti (II) catalysts[J]. Macromolecules, 2014, 47: 2574-2584.
    [9]
    O'KEEFE B J, MONNIER S M, HILLMYERM A, et al. Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides[J]. J Am Chem Soc, 2001, 123: 339-340.
    [10]
    BIERNESSER A B, DELLE CHIAIE K R, CURLEY JB, et al. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst[J]. Angew Chem Int Ed, 2016, 55: 5251-5254.
    [11]
    O'KEEFE B J, BREYFOGLE L E, HILLMYERM A, et al. Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: Single vs multiple site catalysis[J]. J Am Chem Soc, 2002, 124: 4384-4393.
    [12]
    DROUIN F, OGUADINMA P O, WHITEHORNE T J J, et al. Lactide polymerization with chiral β-diketiminate zinc complexes[J]. Organometallics, 2010, 29: 2139-2147.
    [13]
    IKPO N, SAUNDERS L N, WALSH J L, et al. Zinc complexes of piperazinyl derived aminephenolate ligands: Synthesis, characterization and ring-opening polymerization activity[J]. Eur J Inorg Chem, 2011, 2011: 5347-5359.
    [14]
    WANG H, MAH. Highly diastereoselective synthesis of chiral aminophenolate zinc complexes and isoselective polymerization of rac-lactide[J]. Chem Commun, 2013, 49: 8686-8688.
    [15]
    ABBINA S, DUG. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide[J]. ACS Macro Letters, 2014, 3: 689-692.
    [16]
    DUAN R, GAO B, LI X, et al. Zinc complexes bearing tridentate O,N,O-type half-Salen ligands for ring-opening polymerization of lactide[J]. Polymer, 2015, 71: 1-7.
    [17]
    CHANG C H, CHUANG H J, CHEN TY, et al. Di-nuclear zinc complexes containing tridentate imino benzotriazole phenolate derivatives as efficient catalysts for ring opening polymerization of cyclic esters and copolymerization of phthalic anhydride with cyclohexene oxide[J]. J Polym Sci, Part A: Polym Chem, 2016, 54: 714-725.
    [18]
    XIE H, MOU Z, LIUB, et al. Phosphinimino-amino magnesium complexes: Synthesis and catalysis of heteroselective ROP of rac-lactide[J]. Organometallics, 2014, 33: 722-730.
    [19]
    GHOSH S, ANTHARJANAM P K S, CHAKRABORTY D. Magnesium complexes of the N, O polydentate scaffold: Synthesis, structural characterization and polymerization studies[J]. Polymer, 2015, 70: 38-51.
    [20]
    HONRADO M, OTERO A, FERNNDEZ-BAEZAJ, et al. New racemic and single enantiopure hybrid scorpionate/cyclopentadienyl magnesium and zinc initiators for the stereoselective ROP of lactides[J]. Organometallics, 2015, 34: 3196-3208.
    [21]
    WANG Y, MA H. Aluminum complexes of bidentate phenoxy-amine ligands: Synthesis, characterization and catalysis in ring-opening polymerization of cyclic esters[J]. J Organomet Chem, 2013, 731: 23-28.
    [22]
    NORMAND M, ROISNEL T, CARPENTIER JF, et al. Dinuclear vs. mononuclear complexes: Accelerated, metal dependent ring-opening polymerization of lactide[J]. Chem Commun, 2013, 49: 11692-11694.
    [23]
    ZHAO N, WANG Q, HOU G, et al. Synthesis, structure, and catalytic activity of binuclear aluminum complexes with chiral biaryl-based N2O ligands[J]. J Organomet Chem, 2014, 754: 51-58.
    [24]
    PANG X, DUAN R, LI X, et al. Bimetallic Schiff base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide[J]. RSC Adv, 2014, 4: 22561-22566.
    [25]
    PRESS K, GOLDBERG I, KOLM. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew Chem Int Ed, 2015, 54: 14858-14861.
    [26]
    DUAN R, SUN Z, PANG X, et al. Non-symmetrical aluminium salen complexes: Synthesis and their reactivity with cyclic ester[J]. Polymer, 2015, 77: 122-128.
    [27]
    CHANG M C, LU W Y, CHANG HY, et al. Comparative study of aluminum complexes bearing N,O- and N,S-Schiff base in ring-opening polymerization of ε-caprolactone and l-lactide[J]. Inorg Chem, 2015, 54: 11292-11298.
    [28]
    KAN C, GE J, MA H. Aluminum methyl, alkoxide and α-alkoxy ester complexes supported by 6,6’-dimethylbiphenylbridged salen ligands: Synthesis, characterization and catalysis for rac-lactide polymerization[J]. Dalton Trans, 2016, 45: 6682-6695.
    [29]
    KO B T, LIN C C. Synthesis, characterization, and catalysis of mixed-ligand lithium aggregates, excellent initiators for the ring-opening polymerization of l-lactide[J]. J Am Chem Soc, 2001, 123: 7973-7977.
    [30]
    PENG Y L, HUANG Y, CHUANG H J, et al. Synthesis and characterization of biodegradable polylactides and polylactide-block-poly(Z-lysine) copolymers[J]. Polymer, 2010, 51: 4329-4335.
    [31]
    ZHANG J, JIAN C, GAO Y, et al. Synthesis and characterization of multi-alkali-metal tetraphenolates and application in ring-opening polymerization of lactide[J]. Inorg Chem, 2012, 51: 13380-13389.
    [32]
    HUANG Y, WANG W, LIN C C, et al. Potassium, zinc, and magnesium complexes of a bulky OOO-tridentate bis(phenolate) ligand: Synthesis, structures, and studies of cyclic ester polymerisation[J]. Dalton Trans, 2013, 42: 9313-9324.
    [33]
    ZHANG J, XIONG J, SUN Y, et al. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide[J]. Macromolecules, 2014, 47: 7789-7796.
    [34]
    LI Y, ZHAO H, MAO X, et al. Structures of potassium calix[4]arene crown ether inclusion complexes and application in polymerization of rac-Lactide[J]. Dalton Trans, 2016, 45: 9636-9645.
    [35]
    CHEN C, CUI Y, MAO X, et al. Suppressing cyclic polymerization for isoselective synthesis of high molecular-weight linear polylactide catalyzed by sodium/potassium sulfonamidate complexes[J]. Macromolecules, 2017, 50: 83-96.
    [36]
    PIETRANGELO A, KNIGHT S C, GUPTA A K, et al. Mechanistic study of the stereoselective polymerization of D,L-lactide using indium(III) halides[J]. J Am Chem Soc, 2010, 132: 11649-11657.
    [37]
    YU I, ACOSTA-RAMIREZ A, MEHRKHODAVANDI P. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity[J]. J Am Chem Soc, 2012, 134: 12758-12773.
    [38]
    NORMAND M, DORCET V, KIRILLOV E, et al. {Phenoxy-imine}aluminum versus -indium complexes for the immortal ROP of lactide: Different stereocontrol, different mechanisms[J]. Organometallics, 2013, 32: 1694-1709.
    [39]
    ALUTHGE D C, PATRICK B O, MEHRKHODAVANDI P. A highly active and site selective indium catalyst for lactide polymerization[J]. Chem Commun, 2013, 49: 4295-4297.
    [40]
    DAGORNE S, NORMAND M, KIRILLOV E, et al. Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates[J]. Coord Chem Rev, 2013, 257: 1869-1886.
    [41]
    KAPELSKI A, OKUDA J. Ring-opening polymerization of rac- and meso-lactide initiated by indium bis(phenolate) isopropoxy complexes[J]. J Polym Sci, Part A: Polym Chem, 2013, 51: 4983-4991.
    [42]
    MA H, SPANIOL T P, OKUDA J. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato)scandium complexes[J]. Angew Chem Int Ed, 2006, 45: 7818-7821.
    [43]
    LIU X, SHANG X, TANGT, et al. Achiral lanthanide alkyl complexes bearing N,O multidentate ligands. Synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide[J]. Organometallics, 2007, 26: 2747-2757.
    [44]
    MOU Z, LIU B, LIU X, et al. Efficient and heteroselective heteroscorpionate rare-earth-metal zwitterionic initiators for ROP of rac-lactide: Role of σ-ligand[J]. Macromolecules, 2014, 47: 2233-2241.
    [45]
    HERMANS C, RONG W, SPANIOLT P, et al. Lanthanum complexes containing a bis(phenolate) ligand with a ferrocene-1,1’-diyldithio backbone: Synthesis, characterization, and ring-opening polymerization of rac-lactide[J]. Dalton Trans, 2016, 45: 8127-8133.
    [46]
    HAO H, BHANDARI S, DING Y, et al. Pyrrolylaldiminato complexes of Zn, Mg and Al[J]. Eur J Inorg Chem, 2010, 2002(5): 1060-1065.
    [47]
    KANEKO H, DIETRICH H M, SCHDLE C, et al. Synthesis of rare-earth-metal iminopyrrolyl complexes from alkyl precursors: Ln→Al N-ancillary ligand transfer[J]. Organometallics, 2013, 32: 1199-1208.
    [48]
    PRACHA S, PRABAN S, NIEWPUNG A, et al. Syntheses of bi(pyrrolylaldiminato)aluminum complexes for the polymerisation of lactide[J]. Dalton Trans, 2013, 42: 15191-15198.
    [49]
    TABTHONG S, NANOK T, KONGSAEREE P, et al. Monomethylaluminum and dimethylaluminum pyrrolylaldiminates for the ring-opening polymerization of rac-lactide: Effects of ligand structure and coordination geometry[J]. Dalton Trans, 2014, 43: 1348-1359.
    [50]
    YOSHIDA Y, MATSUI S, TAKAGIY, et al. New titanium complexes having two pyrrolide-imine chelate ligands: Syntheses, structures, and ethylene polymerization behavior[J]. Organometallics, 2001, 20: 4793-4799.
    [51]
    LI Y S, LI Y R, LI XF. New neutral nickel(II) complexes bearing pyrrole-imine chelate ligands: Synthesis, structure and norbornene polymerization behavior[J]. J Organomet Chem, 2003, 667: 185-191.
    [52]
    BROOMFIELD L M, WRIGHT J A, BOCHMANN M. Synthesis, structures and reactivity of 2-phosphorylmethyl-1H-pyrrolato complexes of titanium, yttrium and zinc [J]. Dalton Trans, 2009, 39:8269-8279.
    [53]
    XU B C, HU T,WU J Q, et al. Novel vanadium(III) complexes with bidentate N,N-chelating iminopyrrolide ligands: Synthesis, characterization and catalytic behaviour of ethylene polymerization and copolymerization with 10-undecen-1-ol[J]. Dalton Trans, 2009, 41:8854-8863.
    [54]
    GOMES C S, SURESH D, GOMES P T, et al. Sodium complexes containing 2-iminopyrrolyl ligands: The influence of steric hindrance in the formation of coordination polymers[J]. Dalton Trans, 2010, 39: 736-748.
    [55]
    LIU J Y, TAO P, WANG Y X, et al. Highly active half-sandwich chromium(III) catalysts bearing bis(imino)pyrrole ligands for ethylene (co)polymerization[J]. RSC Adv, 2014, 4: 19433-19439.
    [56]
    SAVEM, SCHAPPACHER M, SOUM A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. general aspects and kinetics[J]. Macromol Chem Phys, 2002, 203: 889-899.
    [57]
    ROSCA S C, ROSCA D A, DORCET V, et al. Alkali aminoether-phenolate complexes: Synthesis, structural characterization and evidence for an activated monomer ROP mechanism[J]. Dalton Trans, 2013, 42: 9361-9375.
    [58]
    CLARKL, DEACON G B, FORSYTH C M, et al. Synthesis and structures of calcium and strontium 2,4-di-tert-butylphenolates and their reactivity towards the amine co-initiated ring-opening polymerisation of rac-lactide[J]. Dalton Trans, 2013, 42: 9294-9312.
    [59]
    CHEN H Y, MIALON L, ABBOUD K A, et al. Comparative study of lactide polymerization with lithium, sodium, magnesium, and calcium complexes of BHT[J]. Organometallics, 2012, 31: 5252-5261.
    [60]
    GALLEGOS C, TABERNERO V, GARCI-VALLE F M, et al. Synthesis and structure of homo- and heterometallic lithium-magnesium complexes and their reactivity in the ROP of rac-lactide[J]. Organometallics, 2013, 32: 6624-6627.
    [61]
    GARCIA'-VALLE F M, ESTIVILL R, GALLEGOS C, et al. Metal and ligand-substituent effects in the immortal polymerization of rac-lactide with Li, Na, and K phenoxo-imine complexes[J]. Organometallics, 2015, 34: 477-487.
    [62]
    DAI Z, SUN Y, XIONG J, et al. Simple sodium and potassium phenolates as catalysts for highly isoselective polymerization of rac-lactide[J]. Catal Sci Technol, 2016, 6: 515-520.
    [63]
    WU B B, WANG Z X. Crown ether complexes of potassium quinolin-8-olates: Synthesis, characterization and catalysis toward the ring-opening polymerization of rac-lactide[J]. RSC Adv, 2017, 7: 11657-11664.
  • 加载中

Catalog

    [1]
    RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311: 484-489.
    [2]
    INKINEN S, HAKKARAINEN M, ALBERTSSONA C, et al. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12: 523-532.
    [3]
    STANFORD M J, DOVEA P. Stereocontrolled ring-opening polymerisation of lactide[J]. Chem Soc Rev, 2010, 39: 486-494.
    [4]
    AJELLAL N, CARPENTIER JF, GUILLAUME C, et al. Metal-catalyzed immortal ring opening polymerization of lactones, lactides and cyclic carbonates[J]. Dalton Trans, 2010, 39: 8363-8376.
    [5]
    DIJKSTRA P J, DU H, FEIJENJ. Single site catalysts for stereoselective ring-opening polymerization of lactides[J]. Polym Chem, 2011, 2: 520-527.
    [6]
    DOVE A P, GIBSON V C, MARSHALL E L, et al. A well defined tin(II) initiator for the living polymerisation of lactide[J]. Chem Commun, 2001,3(3): 283-284.
    [7]
    NIMITSIRIWAT N, GIBSON V C, MARSHALL E L, et al. tert-Butylamidinate tin(II) complexes: High activity, single-site initiators for the controlled production of polylactide[J]. Dalton Trans, 2007, 251(39):4464-4471.
    [8]
    WANG L, POIRIER V, GHIOTTO F, et al. Kinetic analysis of the immortal ring-opening polymerization of cyclic esters: A case study with Ti (II) catalysts[J]. Macromolecules, 2014, 47: 2574-2584.
    [9]
    O'KEEFE B J, MONNIER S M, HILLMYERM A, et al. Rapid and controlled polymerization of lactide by structurally characterized ferric alkoxides[J]. J Am Chem Soc, 2001, 123: 339-340.
    [10]
    BIERNESSER A B, DELLE CHIAIE K R, CURLEY JB, et al. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst[J]. Angew Chem Int Ed, 2016, 55: 5251-5254.
    [11]
    O'KEEFE B J, BREYFOGLE L E, HILLMYERM A, et al. Mechanistic comparison of cyclic ester polymerizations by novel iron(III)-alkoxide complexes: Single vs multiple site catalysis[J]. J Am Chem Soc, 2002, 124: 4384-4393.
    [12]
    DROUIN F, OGUADINMA P O, WHITEHORNE T J J, et al. Lactide polymerization with chiral β-diketiminate zinc complexes[J]. Organometallics, 2010, 29: 2139-2147.
    [13]
    IKPO N, SAUNDERS L N, WALSH J L, et al. Zinc complexes of piperazinyl derived aminephenolate ligands: Synthesis, characterization and ring-opening polymerization activity[J]. Eur J Inorg Chem, 2011, 2011: 5347-5359.
    [14]
    WANG H, MAH. Highly diastereoselective synthesis of chiral aminophenolate zinc complexes and isoselective polymerization of rac-lactide[J]. Chem Commun, 2013, 49: 8686-8688.
    [15]
    ABBINA S, DUG. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide[J]. ACS Macro Letters, 2014, 3: 689-692.
    [16]
    DUAN R, GAO B, LI X, et al. Zinc complexes bearing tridentate O,N,O-type half-Salen ligands for ring-opening polymerization of lactide[J]. Polymer, 2015, 71: 1-7.
    [17]
    CHANG C H, CHUANG H J, CHEN TY, et al. Di-nuclear zinc complexes containing tridentate imino benzotriazole phenolate derivatives as efficient catalysts for ring opening polymerization of cyclic esters and copolymerization of phthalic anhydride with cyclohexene oxide[J]. J Polym Sci, Part A: Polym Chem, 2016, 54: 714-725.
    [18]
    XIE H, MOU Z, LIUB, et al. Phosphinimino-amino magnesium complexes: Synthesis and catalysis of heteroselective ROP of rac-lactide[J]. Organometallics, 2014, 33: 722-730.
    [19]
    GHOSH S, ANTHARJANAM P K S, CHAKRABORTY D. Magnesium complexes of the N, O polydentate scaffold: Synthesis, structural characterization and polymerization studies[J]. Polymer, 2015, 70: 38-51.
    [20]
    HONRADO M, OTERO A, FERNNDEZ-BAEZAJ, et al. New racemic and single enantiopure hybrid scorpionate/cyclopentadienyl magnesium and zinc initiators for the stereoselective ROP of lactides[J]. Organometallics, 2015, 34: 3196-3208.
    [21]
    WANG Y, MA H. Aluminum complexes of bidentate phenoxy-amine ligands: Synthesis, characterization and catalysis in ring-opening polymerization of cyclic esters[J]. J Organomet Chem, 2013, 731: 23-28.
    [22]
    NORMAND M, ROISNEL T, CARPENTIER JF, et al. Dinuclear vs. mononuclear complexes: Accelerated, metal dependent ring-opening polymerization of lactide[J]. Chem Commun, 2013, 49: 11692-11694.
    [23]
    ZHAO N, WANG Q, HOU G, et al. Synthesis, structure, and catalytic activity of binuclear aluminum complexes with chiral biaryl-based N2O ligands[J]. J Organomet Chem, 2014, 754: 51-58.
    [24]
    PANG X, DUAN R, LI X, et al. Bimetallic Schiff base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide[J]. RSC Adv, 2014, 4: 22561-22566.
    [25]
    PRESS K, GOLDBERG I, KOLM. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew Chem Int Ed, 2015, 54: 14858-14861.
    [26]
    DUAN R, SUN Z, PANG X, et al. Non-symmetrical aluminium salen complexes: Synthesis and their reactivity with cyclic ester[J]. Polymer, 2015, 77: 122-128.
    [27]
    CHANG M C, LU W Y, CHANG HY, et al. Comparative study of aluminum complexes bearing N,O- and N,S-Schiff base in ring-opening polymerization of ε-caprolactone and l-lactide[J]. Inorg Chem, 2015, 54: 11292-11298.
    [28]
    KAN C, GE J, MA H. Aluminum methyl, alkoxide and α-alkoxy ester complexes supported by 6,6’-dimethylbiphenylbridged salen ligands: Synthesis, characterization and catalysis for rac-lactide polymerization[J]. Dalton Trans, 2016, 45: 6682-6695.
    [29]
    KO B T, LIN C C. Synthesis, characterization, and catalysis of mixed-ligand lithium aggregates, excellent initiators for the ring-opening polymerization of l-lactide[J]. J Am Chem Soc, 2001, 123: 7973-7977.
    [30]
    PENG Y L, HUANG Y, CHUANG H J, et al. Synthesis and characterization of biodegradable polylactides and polylactide-block-poly(Z-lysine) copolymers[J]. Polymer, 2010, 51: 4329-4335.
    [31]
    ZHANG J, JIAN C, GAO Y, et al. Synthesis and characterization of multi-alkali-metal tetraphenolates and application in ring-opening polymerization of lactide[J]. Inorg Chem, 2012, 51: 13380-13389.
    [32]
    HUANG Y, WANG W, LIN C C, et al. Potassium, zinc, and magnesium complexes of a bulky OOO-tridentate bis(phenolate) ligand: Synthesis, structures, and studies of cyclic ester polymerisation[J]. Dalton Trans, 2013, 42: 9313-9324.
    [33]
    ZHANG J, XIONG J, SUN Y, et al. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide[J]. Macromolecules, 2014, 47: 7789-7796.
    [34]
    LI Y, ZHAO H, MAO X, et al. Structures of potassium calix[4]arene crown ether inclusion complexes and application in polymerization of rac-Lactide[J]. Dalton Trans, 2016, 45: 9636-9645.
    [35]
    CHEN C, CUI Y, MAO X, et al. Suppressing cyclic polymerization for isoselective synthesis of high molecular-weight linear polylactide catalyzed by sodium/potassium sulfonamidate complexes[J]. Macromolecules, 2017, 50: 83-96.
    [36]
    PIETRANGELO A, KNIGHT S C, GUPTA A K, et al. Mechanistic study of the stereoselective polymerization of D,L-lactide using indium(III) halides[J]. J Am Chem Soc, 2010, 132: 11649-11657.
    [37]
    YU I, ACOSTA-RAMIREZ A, MEHRKHODAVANDI P. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity[J]. J Am Chem Soc, 2012, 134: 12758-12773.
    [38]
    NORMAND M, DORCET V, KIRILLOV E, et al. {Phenoxy-imine}aluminum versus -indium complexes for the immortal ROP of lactide: Different stereocontrol, different mechanisms[J]. Organometallics, 2013, 32: 1694-1709.
    [39]
    ALUTHGE D C, PATRICK B O, MEHRKHODAVANDI P. A highly active and site selective indium catalyst for lactide polymerization[J]. Chem Commun, 2013, 49: 4295-4297.
    [40]
    DAGORNE S, NORMAND M, KIRILLOV E, et al. Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates[J]. Coord Chem Rev, 2013, 257: 1869-1886.
    [41]
    KAPELSKI A, OKUDA J. Ring-opening polymerization of rac- and meso-lactide initiated by indium bis(phenolate) isopropoxy complexes[J]. J Polym Sci, Part A: Polym Chem, 2013, 51: 4983-4991.
    [42]
    MA H, SPANIOL T P, OKUDA J. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato)scandium complexes[J]. Angew Chem Int Ed, 2006, 45: 7818-7821.
    [43]
    LIU X, SHANG X, TANGT, et al. Achiral lanthanide alkyl complexes bearing N,O multidentate ligands. Synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide[J]. Organometallics, 2007, 26: 2747-2757.
    [44]
    MOU Z, LIU B, LIU X, et al. Efficient and heteroselective heteroscorpionate rare-earth-metal zwitterionic initiators for ROP of rac-lactide: Role of σ-ligand[J]. Macromolecules, 2014, 47: 2233-2241.
    [45]
    HERMANS C, RONG W, SPANIOLT P, et al. Lanthanum complexes containing a bis(phenolate) ligand with a ferrocene-1,1’-diyldithio backbone: Synthesis, characterization, and ring-opening polymerization of rac-lactide[J]. Dalton Trans, 2016, 45: 8127-8133.
    [46]
    HAO H, BHANDARI S, DING Y, et al. Pyrrolylaldiminato complexes of Zn, Mg and Al[J]. Eur J Inorg Chem, 2010, 2002(5): 1060-1065.
    [47]
    KANEKO H, DIETRICH H M, SCHDLE C, et al. Synthesis of rare-earth-metal iminopyrrolyl complexes from alkyl precursors: Ln→Al N-ancillary ligand transfer[J]. Organometallics, 2013, 32: 1199-1208.
    [48]
    PRACHA S, PRABAN S, NIEWPUNG A, et al. Syntheses of bi(pyrrolylaldiminato)aluminum complexes for the polymerisation of lactide[J]. Dalton Trans, 2013, 42: 15191-15198.
    [49]
    TABTHONG S, NANOK T, KONGSAEREE P, et al. Monomethylaluminum and dimethylaluminum pyrrolylaldiminates for the ring-opening polymerization of rac-lactide: Effects of ligand structure and coordination geometry[J]. Dalton Trans, 2014, 43: 1348-1359.
    [50]
    YOSHIDA Y, MATSUI S, TAKAGIY, et al. New titanium complexes having two pyrrolide-imine chelate ligands: Syntheses, structures, and ethylene polymerization behavior[J]. Organometallics, 2001, 20: 4793-4799.
    [51]
    LI Y S, LI Y R, LI XF. New neutral nickel(II) complexes bearing pyrrole-imine chelate ligands: Synthesis, structure and norbornene polymerization behavior[J]. J Organomet Chem, 2003, 667: 185-191.
    [52]
    BROOMFIELD L M, WRIGHT J A, BOCHMANN M. Synthesis, structures and reactivity of 2-phosphorylmethyl-1H-pyrrolato complexes of titanium, yttrium and zinc [J]. Dalton Trans, 2009, 39:8269-8279.
    [53]
    XU B C, HU T,WU J Q, et al. Novel vanadium(III) complexes with bidentate N,N-chelating iminopyrrolide ligands: Synthesis, characterization and catalytic behaviour of ethylene polymerization and copolymerization with 10-undecen-1-ol[J]. Dalton Trans, 2009, 41:8854-8863.
    [54]
    GOMES C S, SURESH D, GOMES P T, et al. Sodium complexes containing 2-iminopyrrolyl ligands: The influence of steric hindrance in the formation of coordination polymers[J]. Dalton Trans, 2010, 39: 736-748.
    [55]
    LIU J Y, TAO P, WANG Y X, et al. Highly active half-sandwich chromium(III) catalysts bearing bis(imino)pyrrole ligands for ethylene (co)polymerization[J]. RSC Adv, 2014, 4: 19433-19439.
    [56]
    SAVEM, SCHAPPACHER M, SOUM A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. general aspects and kinetics[J]. Macromol Chem Phys, 2002, 203: 889-899.
    [57]
    ROSCA S C, ROSCA D A, DORCET V, et al. Alkali aminoether-phenolate complexes: Synthesis, structural characterization and evidence for an activated monomer ROP mechanism[J]. Dalton Trans, 2013, 42: 9361-9375.
    [58]
    CLARKL, DEACON G B, FORSYTH C M, et al. Synthesis and structures of calcium and strontium 2,4-di-tert-butylphenolates and their reactivity towards the amine co-initiated ring-opening polymerisation of rac-lactide[J]. Dalton Trans, 2013, 42: 9294-9312.
    [59]
    CHEN H Y, MIALON L, ABBOUD K A, et al. Comparative study of lactide polymerization with lithium, sodium, magnesium, and calcium complexes of BHT[J]. Organometallics, 2012, 31: 5252-5261.
    [60]
    GALLEGOS C, TABERNERO V, GARCI-VALLE F M, et al. Synthesis and structure of homo- and heterometallic lithium-magnesium complexes and their reactivity in the ROP of rac-lactide[J]. Organometallics, 2013, 32: 6624-6627.
    [61]
    GARCIA'-VALLE F M, ESTIVILL R, GALLEGOS C, et al. Metal and ligand-substituent effects in the immortal polymerization of rac-lactide with Li, Na, and K phenoxo-imine complexes[J]. Organometallics, 2015, 34: 477-487.
    [62]
    DAI Z, SUN Y, XIONG J, et al. Simple sodium and potassium phenolates as catalysts for highly isoselective polymerization of rac-lactide[J]. Catal Sci Technol, 2016, 6: 515-520.
    [63]
    WU B B, WANG Z X. Crown ether complexes of potassium quinolin-8-olates: Synthesis, characterization and catalysis toward the ring-opening polymerization of rac-lactide[J]. RSC Adv, 2017, 7: 11657-11664.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return