ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Effect of bolt joints on behaviour of transmission tower under external loads

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2017.06.008
  • Received Date: 23 February 2017
  • Rev Recd Date: 23 March 2017
  • Publish Date: 30 June 2017
  • To ensure the safe operation of transmission lines, it is necessary to convert metecorological conditions to equvalent external forces in simulation calculations in the design process of transmission tower. The traditional structural finite element analysis methods usually simplify the bolt joints of steel angles as rigid or pinned connections,ignoring the effect of slip and eccentricity. Using ANSYS software, on the basis of an original slip model, an improved slip model was built by further considering bolt joints in tower legs and tower head. Simulation results were compared with the original slip model and two conventional models. The rationality of the model was verified by the dynamic and static measurements of the full scale tower test, enabling the investigation of responses of the maximal working load conditions. It could be found that, the improved slip model optimizes the forecast of the bending modal frequencies and accurately simulates the real deformation and axial force of the transmission tower. The effect of bolt joints is related to the load combination conditions. Consideration of the effect of bolt joints in tower legs and tower head is necessary to the analysis of the most dangerous condition: wire breakage.
    To ensure the safe operation of transmission lines, it is necessary to convert metecorological conditions to equvalent external forces in simulation calculations in the design process of transmission tower. The traditional structural finite element analysis methods usually simplify the bolt joints of steel angles as rigid or pinned connections,ignoring the effect of slip and eccentricity. Using ANSYS software, on the basis of an original slip model, an improved slip model was built by further considering bolt joints in tower legs and tower head. Simulation results were compared with the original slip model and two conventional models. The rationality of the model was verified by the dynamic and static measurements of the full scale tower test, enabling the investigation of responses of the maximal working load conditions. It could be found that, the improved slip model optimizes the forecast of the bending modal frequencies and accurately simulates the real deformation and axial force of the transmission tower. The effect of bolt joints is related to the load combination conditions. Consideration of the effect of bolt joints in tower legs and tower head is necessary to the analysis of the most dangerous condition: wire breakage.
  • loading
  • [1]
    包永忠, 冯德奎, 赵全江, 等. 输电线路铁塔抗冰设计[J]. 电网与清洁能源, 2009, 25(11): 13-16.
    BAO Yongzhong, FENG Dekui, ZHAO Quanjiang, et al. Ice-resistant design of transmission line towers [J]. Power System and Clean Energy, 2009, 25(11): 13-16.
    [2]
    ALBERMANI F G A, KITIPORNCHAI S. Numerical simulation of structural behaviour of transmission towers [J]. Thin-walled Structures, 2003, 41(2): 167-177.
    [3]
    ALBERMANI F, KITIPORNCHAI S, CHAN R W K. Failure analysis of transmission towers [J]. Engineering Failure Analysis, 2009, 16(6): 1922-1928.
    [4]
    XIE Q, SUN L. Experimental study on the mechanical behavior and failure mechanism of a latticed steel transmission tower [J]. Journal of Structural Engineering, 2013, 139(6): 1009-1018.
    [5]
    JIANG W Q, WANG Z Q, MCCLURE G, et al. Accurate modeling of joint effects in lattice transmission towers [J]. Engineering Structures, 2011, 33(5): 1817-1827.
    [6]
    SZAFRAN J, RYKALUK K. A full-scale experiment of a lattice telecommunication tower under breaking load [J]. Journal of Constructional Steel Research, 2016, 120: 160-175.
    [7]
    沈国辉, 袁光辉, 孙炳楠, 等. 覆冰脱落对输电塔线体系的动力冲击作用研究[J]. 工程力学, 2010, 27(5): 210-217.
    SHEN Guohui, YUAN Guanghui, SUN Bingnan, et al. Dynamic impact effects on tower-line system due to ice-shedding [J]. Engineering Mechanics, 2010, 27(5): 210-217.
    [8]
    沈国辉, 徐晓斌, 楼文娟, 等. 导线覆冰脱冰有限元模拟方法的适用性分析[J]. 工程力学, 2011, 28(10): 9-15, 40.
    SHEN Guohui, XU Xiaobin, LOU Wenjuan, et al. Applicability analysis of finite element methodologies to simulate the ice-accreting and ice-shedding on transmission lines [J]. Engineering Mechanics, 2011, 28(10): 9-15, 40.
    [9]
    晏致涛, 李正良, 汪之松. 重冰区输电塔-线体系脱冰振动的数值模拟[J]. 工程力学, 2010, 27(1): 209-214, 227.
    YAN Zhitao, LI Zhengliang, WANG Zhisong. Simulation of ice-shedding of transmission tower-line system in heavy ice regions [J]. Engineering Mechanics, 2010, 27(1): 209-214, 227.
    [10]
    李黎, 尹鹏. 大跨越输电塔-线体系风振控制研究[J].工程力学, 2008, 25(S2): 213-229.
    LI Li, YIN Peng. The research on wind-induced vibration control for big-span electrical transmission tower-line system [J]. Engineering Mechanics, 2008, 25(S2): 213-229.
    [11]

    杨靖波, 李正, 杨风利, 等. 2008年电网冰灾覆冰及倒塔特征分析[J]. 电网与水力发电进展, 2008, 24(4): 4-8.
    YANG Jingbo, LI Zheng, YANG Fengli, et al. Analysis of the features of covered ice and collapsed tower of transmission line snow and ice attacked in 2008 [J]. Advances of Power System and Hydroelectric Engineering, 2008, 24(4): 4-8.
    [12]
    陆佳政, 刘纯, 陈红冬, 等. 500kV 输电塔线覆冰有限元计算[J]. 高电压技术, 2007, 33(10): 167-169.
    LU Jiazheng, LIU Chun, CHEN Hongdong, et al. Finite element calculation of 500 kV iced power transmission system [J]. High Voltage Engineering, 2007, 33(10): 167-169.
    [13]
    李黎, 夏正春, 江宜城, 等. 输电线断线振荡研究[J]. 工程力学, 2008, 25(6): 165-169.
    LI Li, XIA Zhengchun, JIANG Yicheng, et al. Study on wire breaking-induced vibrations of electric transmission line[J]. Engineering Mechanics, 2008, 25(6): 165-169.
    [14]
    沈国辉, 默增禄, 孙炳楠, 等. 突然断线对输电塔线体系的冲击作用研究[J]. 振动与冲击, 2009, 28(12): 4-8.
    SHEN Guohui, MO Zenglu, SUN Bingnan, et al. Research of impact effect on transmission line system due to sudden breakage of conductor[J]. Journal of Vibration and Shock, 2009, 28(12): 4-8.
    [15]
    夏正春, 李黎, 梁政平, 等. 输电塔在线路断线作用下的动力响应[J]. 振动与冲击, 2007, 26(11): 45-49.
    XIA Zhengchun, LI Li, LIANG Zhengping, et al. Dynamic response of transmission tower with ruptured wires [J]. Journal of Vibration and Shock, 2007, 26(11): 45-49.
    [16]
    国家能源局.架空送电线路杆塔结构设计技术规定: DL/T5154-2012[S]. 北京:中国计划出版社,2012.
    National Energy Administration. Technical Regulation of Design for Tower and Pole Structures of Overhead Transmission Line: DL/T5154-2012[S]. Beijing: China Planning Press, 2002.
    [17]
    LEE P S, MCCLURE G. Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests[J]. Journal of Constructional Steel Research, 2007, 63(5): 709-717.
    [18]
    KITIPORNCHAI S, AL-BERMANI F G A, PEYROT A H. Effect of bolt slippage on ultimate behavior of lattice structures[J]. Journal of Structural Engineering, 1994, 120(8): 2281-2287.
    [19]
    AHMED K I E, RAJAPAKSE R K N D, GADALA M S. Influence of bolted-joint slippage on the response of transmission towers subjected to frost-heave[J]. Advances in Structural Engineering, 2009, 12(1): 1-17.
    [20]
    ZHAN Y, WU G, LU Q L. Modeling the effect of joint slip in lattice steel structures [J]. Journal of Performance of Constructed Facilities, 2015, 30(3): 04015059.
    [21]
    高康, 陈海波, 王朋, 等. 螺栓滑移对非均匀沉降输电塔承载能力的影响初探[J]. 中国科学技术大学学报, 2012, 42(12): 984-989.
    GAO Kang, CHEN Haibo, WANG Peng, et al. Preliminary research of the effect of bolt slippage on the bearing capacity of transmission towers with base unequal settlement [J]. Journal of University of Science and Technology of China, 2012, 42(12): 984-989.
    [22]
    王朋, 陈海波, 张会武, 等. 螺栓连接对基础非均匀沉降输电塔的影响研究[J]. 工程力学, 2015, 32(10): 209-219.
    WANG Peng, CHEN Haibo, ZHANG Huiwu, et al. Effect of bolt joint on the behavior of transmission tower with non-uniform settlement[J]. Engineering Mechanics, 2015, 32(10): 209-219.
    [23]
    黄伟东, 陈海波, 王朋, 等. 输电塔螺栓搭接滑移过程的数值模拟[J]. 固体力学学报, 2014, 35(S1): 215-220.
    HUANG Weidong, CHEN Haibo, WANG Peng, et al. Finite element simulation of bolt slippage in the lap joints of transmission tower[J]. Chinese Journal of Solid Mechanics, 2014, 35(S1): 215-220.
    [24]
    汪江, 杜晓峰, 张会武, 等. 淮蚌线淮河大跨越输电塔有限元建模和修正研究[J]. 钢结构, 2009, 24(1): 21-24.
    WANG Jiang, DU Xiaofeng, ZHANG Huiwu, et al. Parametric finite element modeling and updating of EHV power transmission tower [J]. Steel Construction, 2009, 24(1): 21-24.
    [25]
    国家电力公司东北电力设计院. 电力工程高压送电线路设计手册[M]. 北京: 中国电力出版社, 2003.
  • 加载中

Catalog

    [1]
    包永忠, 冯德奎, 赵全江, 等. 输电线路铁塔抗冰设计[J]. 电网与清洁能源, 2009, 25(11): 13-16.
    BAO Yongzhong, FENG Dekui, ZHAO Quanjiang, et al. Ice-resistant design of transmission line towers [J]. Power System and Clean Energy, 2009, 25(11): 13-16.
    [2]
    ALBERMANI F G A, KITIPORNCHAI S. Numerical simulation of structural behaviour of transmission towers [J]. Thin-walled Structures, 2003, 41(2): 167-177.
    [3]
    ALBERMANI F, KITIPORNCHAI S, CHAN R W K. Failure analysis of transmission towers [J]. Engineering Failure Analysis, 2009, 16(6): 1922-1928.
    [4]
    XIE Q, SUN L. Experimental study on the mechanical behavior and failure mechanism of a latticed steel transmission tower [J]. Journal of Structural Engineering, 2013, 139(6): 1009-1018.
    [5]
    JIANG W Q, WANG Z Q, MCCLURE G, et al. Accurate modeling of joint effects in lattice transmission towers [J]. Engineering Structures, 2011, 33(5): 1817-1827.
    [6]
    SZAFRAN J, RYKALUK K. A full-scale experiment of a lattice telecommunication tower under breaking load [J]. Journal of Constructional Steel Research, 2016, 120: 160-175.
    [7]
    沈国辉, 袁光辉, 孙炳楠, 等. 覆冰脱落对输电塔线体系的动力冲击作用研究[J]. 工程力学, 2010, 27(5): 210-217.
    SHEN Guohui, YUAN Guanghui, SUN Bingnan, et al. Dynamic impact effects on tower-line system due to ice-shedding [J]. Engineering Mechanics, 2010, 27(5): 210-217.
    [8]
    沈国辉, 徐晓斌, 楼文娟, 等. 导线覆冰脱冰有限元模拟方法的适用性分析[J]. 工程力学, 2011, 28(10): 9-15, 40.
    SHEN Guohui, XU Xiaobin, LOU Wenjuan, et al. Applicability analysis of finite element methodologies to simulate the ice-accreting and ice-shedding on transmission lines [J]. Engineering Mechanics, 2011, 28(10): 9-15, 40.
    [9]
    晏致涛, 李正良, 汪之松. 重冰区输电塔-线体系脱冰振动的数值模拟[J]. 工程力学, 2010, 27(1): 209-214, 227.
    YAN Zhitao, LI Zhengliang, WANG Zhisong. Simulation of ice-shedding of transmission tower-line system in heavy ice regions [J]. Engineering Mechanics, 2010, 27(1): 209-214, 227.
    [10]
    李黎, 尹鹏. 大跨越输电塔-线体系风振控制研究[J].工程力学, 2008, 25(S2): 213-229.
    LI Li, YIN Peng. The research on wind-induced vibration control for big-span electrical transmission tower-line system [J]. Engineering Mechanics, 2008, 25(S2): 213-229.
    [11]

    杨靖波, 李正, 杨风利, 等. 2008年电网冰灾覆冰及倒塔特征分析[J]. 电网与水力发电进展, 2008, 24(4): 4-8.
    YANG Jingbo, LI Zheng, YANG Fengli, et al. Analysis of the features of covered ice and collapsed tower of transmission line snow and ice attacked in 2008 [J]. Advances of Power System and Hydroelectric Engineering, 2008, 24(4): 4-8.
    [12]
    陆佳政, 刘纯, 陈红冬, 等. 500kV 输电塔线覆冰有限元计算[J]. 高电压技术, 2007, 33(10): 167-169.
    LU Jiazheng, LIU Chun, CHEN Hongdong, et al. Finite element calculation of 500 kV iced power transmission system [J]. High Voltage Engineering, 2007, 33(10): 167-169.
    [13]
    李黎, 夏正春, 江宜城, 等. 输电线断线振荡研究[J]. 工程力学, 2008, 25(6): 165-169.
    LI Li, XIA Zhengchun, JIANG Yicheng, et al. Study on wire breaking-induced vibrations of electric transmission line[J]. Engineering Mechanics, 2008, 25(6): 165-169.
    [14]
    沈国辉, 默增禄, 孙炳楠, 等. 突然断线对输电塔线体系的冲击作用研究[J]. 振动与冲击, 2009, 28(12): 4-8.
    SHEN Guohui, MO Zenglu, SUN Bingnan, et al. Research of impact effect on transmission line system due to sudden breakage of conductor[J]. Journal of Vibration and Shock, 2009, 28(12): 4-8.
    [15]
    夏正春, 李黎, 梁政平, 等. 输电塔在线路断线作用下的动力响应[J]. 振动与冲击, 2007, 26(11): 45-49.
    XIA Zhengchun, LI Li, LIANG Zhengping, et al. Dynamic response of transmission tower with ruptured wires [J]. Journal of Vibration and Shock, 2007, 26(11): 45-49.
    [16]
    国家能源局.架空送电线路杆塔结构设计技术规定: DL/T5154-2012[S]. 北京:中国计划出版社,2012.
    National Energy Administration. Technical Regulation of Design for Tower and Pole Structures of Overhead Transmission Line: DL/T5154-2012[S]. Beijing: China Planning Press, 2002.
    [17]
    LEE P S, MCCLURE G. Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests[J]. Journal of Constructional Steel Research, 2007, 63(5): 709-717.
    [18]
    KITIPORNCHAI S, AL-BERMANI F G A, PEYROT A H. Effect of bolt slippage on ultimate behavior of lattice structures[J]. Journal of Structural Engineering, 1994, 120(8): 2281-2287.
    [19]
    AHMED K I E, RAJAPAKSE R K N D, GADALA M S. Influence of bolted-joint slippage on the response of transmission towers subjected to frost-heave[J]. Advances in Structural Engineering, 2009, 12(1): 1-17.
    [20]
    ZHAN Y, WU G, LU Q L. Modeling the effect of joint slip in lattice steel structures [J]. Journal of Performance of Constructed Facilities, 2015, 30(3): 04015059.
    [21]
    高康, 陈海波, 王朋, 等. 螺栓滑移对非均匀沉降输电塔承载能力的影响初探[J]. 中国科学技术大学学报, 2012, 42(12): 984-989.
    GAO Kang, CHEN Haibo, WANG Peng, et al. Preliminary research of the effect of bolt slippage on the bearing capacity of transmission towers with base unequal settlement [J]. Journal of University of Science and Technology of China, 2012, 42(12): 984-989.
    [22]
    王朋, 陈海波, 张会武, 等. 螺栓连接对基础非均匀沉降输电塔的影响研究[J]. 工程力学, 2015, 32(10): 209-219.
    WANG Peng, CHEN Haibo, ZHANG Huiwu, et al. Effect of bolt joint on the behavior of transmission tower with non-uniform settlement[J]. Engineering Mechanics, 2015, 32(10): 209-219.
    [23]
    黄伟东, 陈海波, 王朋, 等. 输电塔螺栓搭接滑移过程的数值模拟[J]. 固体力学学报, 2014, 35(S1): 215-220.
    HUANG Weidong, CHEN Haibo, WANG Peng, et al. Finite element simulation of bolt slippage in the lap joints of transmission tower[J]. Chinese Journal of Solid Mechanics, 2014, 35(S1): 215-220.
    [24]
    汪江, 杜晓峰, 张会武, 等. 淮蚌线淮河大跨越输电塔有限元建模和修正研究[J]. 钢结构, 2009, 24(1): 21-24.
    WANG Jiang, DU Xiaofeng, ZHANG Huiwu, et al. Parametric finite element modeling and updating of EHV power transmission tower [J]. Steel Construction, 2009, 24(1): 21-24.
    [25]
    国家电力公司东北电力设计院. 电力工程高压送电线路设计手册[M]. 北京: 中国电力出版社, 2003.

    Article Metrics

    Article views (402) PDF downloads(180)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return