ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Influence of silicon doping on mechanical properties of graphene sheets under tension

Cite this:
https://doi.org/10.3969/j.issn.0253-2778.2014.03.013
  • Received Date: 02 February 2013
  • Accepted Date: 07 June 2013
  • Rev Recd Date: 07 June 2013
  • Publish Date: 30 March 2014
  • Using Tersoff potential, the stretch process of silicon doped graphene sheets were simulated via molecular dynamics simulation. The influence of silicon doping on the tensile properties of graphene sheets were analyzed by changing the silicon doping ratios of the armchair and zigzag graphene sheets respectively, and the corresponding stress-strain relationships and tensile failure modes were obtained. The results indicate that silicon substitution in graphene has an obvious effect on its Youngs modulus, and that the ultimate tensile strain and tensile strength of grapheme sheets were significantly reduced due to the increase in silicon substitution ratios respectively.
    Using Tersoff potential, the stretch process of silicon doped graphene sheets were simulated via molecular dynamics simulation. The influence of silicon doping on the tensile properties of graphene sheets were analyzed by changing the silicon doping ratios of the armchair and zigzag graphene sheets respectively, and the corresponding stress-strain relationships and tensile failure modes were obtained. The results indicate that silicon substitution in graphene has an obvious effect on its Youngs modulus, and that the ultimate tensile strain and tensile strength of grapheme sheets were significantly reduced due to the increase in silicon substitution ratios respectively.
  • loading
  • [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    [2]
    Lee C,Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    [3]
    Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene[J]. Science, 2010, 330(6006):946-948.
    [4]
    Balandin A A,Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
    [5]
    Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6):327-331.
    [6]
    Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
    [7]
    Liu F, Ming P M, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6): 064120.
    [8]
    Reddy C D, Rajendran S, Liew K M. Equilibrium configuration and continuum elastic properties of finite sized grapheme[J]. Nanotechnology, 2006, 17(3): 864-870.
    [9]
    Huang Y, Wu J, Hwang K C. Thickness of graphene and single-wall carbon nanotubes[J]. Physical Review B, 2006, 74(24): 245413.
    [10]
    Konstantinova E, Dantas S O, Barone P. Electronic and elastic properties of two-dimensional carbon planes[J]. Physical Review B, 2006, 74(3): 035417.
    [11]
    Zakharchenko K V, Katsnelson M I, Fasolino A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation[J]. Physical Review Letters, 2009, 102(4): 046808.
    [12]
    Bu H, Chen Y, Zou M, et al. Atomistic simulations of mechanical properties of graphene nanoribbons[J]. Physics Letters A, 2009, 373(37): 335 9-3 362.
    [13]
    Ni Z, Bu H, Zou M, et al. Anisotropic mechanical properties of grapheme sheets from molecular dynamics[J]. Physica B, 2010, 405(5):1 301-1 306.
    [14]
    Han Q, Huang L. Molecular simulation of tensile properties of graphene sheets[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(2): 29-34.
    韩强,黄凌燕.石墨烯薄膜拉伸性能的分子动力学模拟[J].华南理工大学学报(自然科学版), 2012, 40(2): 29-34.
    [15]
    Han T, He P, Wang J, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single grapheme sheet[J]. Journal of Tongji University (Natural Science), 2009, 37(12): 1 638-1 641.
    韩同伟,贺鹏飞,王健,等.石墨烯拉伸力学性能温度相关性的数值模拟[J].同济大学学报(自然科学版), 2009, 37(12): 1 638-1 641.
    [16]
    Yang X, He P, Wu A, et al. Molecular dynamics simulation of nanoindentation for graphene[J]. Scientia Sinica Phy, Mech & Astron, 2009, 40(3): 353-360.
    杨晓东,贺鹏飞,吴艾辉,等.石墨烯纳米压痕试验的分子动力学模拟[J].中国科学:物理学 力学 天文学, 2009, 40(3): 353-360.
    [17]
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
    [18]
    Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Letters, 2010, 10(2): 490-493.
    [19]
    Zhou W, Kapetanakis M, Prange M, et al. Direct determination of the chemical bonding of individual impurities in graphene[J]. Physical Review Letters, 2012, 109(20):206803.
    [20]
    朱宏伟,徐志平,谢丹. 石墨烯——结构、制备方法与性能表征[M]. 北京:清华大学出版社,2011.
    [21]
    Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5 566-5 568.
    [22]
    Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Clarendon Press, 1987.
  • 加载中

Catalog

    [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    [2]
    Lee C,Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    [3]
    Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene[J]. Science, 2010, 330(6006):946-948.
    [4]
    Balandin A A,Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
    [5]
    Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6):327-331.
    [6]
    Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
    [7]
    Liu F, Ming P M, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6): 064120.
    [8]
    Reddy C D, Rajendran S, Liew K M. Equilibrium configuration and continuum elastic properties of finite sized grapheme[J]. Nanotechnology, 2006, 17(3): 864-870.
    [9]
    Huang Y, Wu J, Hwang K C. Thickness of graphene and single-wall carbon nanotubes[J]. Physical Review B, 2006, 74(24): 245413.
    [10]
    Konstantinova E, Dantas S O, Barone P. Electronic and elastic properties of two-dimensional carbon planes[J]. Physical Review B, 2006, 74(3): 035417.
    [11]
    Zakharchenko K V, Katsnelson M I, Fasolino A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation[J]. Physical Review Letters, 2009, 102(4): 046808.
    [12]
    Bu H, Chen Y, Zou M, et al. Atomistic simulations of mechanical properties of graphene nanoribbons[J]. Physics Letters A, 2009, 373(37): 335 9-3 362.
    [13]
    Ni Z, Bu H, Zou M, et al. Anisotropic mechanical properties of grapheme sheets from molecular dynamics[J]. Physica B, 2010, 405(5):1 301-1 306.
    [14]
    Han Q, Huang L. Molecular simulation of tensile properties of graphene sheets[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(2): 29-34.
    韩强,黄凌燕.石墨烯薄膜拉伸性能的分子动力学模拟[J].华南理工大学学报(自然科学版), 2012, 40(2): 29-34.
    [15]
    Han T, He P, Wang J, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single grapheme sheet[J]. Journal of Tongji University (Natural Science), 2009, 37(12): 1 638-1 641.
    韩同伟,贺鹏飞,王健,等.石墨烯拉伸力学性能温度相关性的数值模拟[J].同济大学学报(自然科学版), 2009, 37(12): 1 638-1 641.
    [16]
    Yang X, He P, Wu A, et al. Molecular dynamics simulation of nanoindentation for graphene[J]. Scientia Sinica Phy, Mech & Astron, 2009, 40(3): 353-360.
    杨晓东,贺鹏飞,吴艾辉,等.石墨烯纳米压痕试验的分子动力学模拟[J].中国科学:物理学 力学 天文学, 2009, 40(3): 353-360.
    [17]
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
    [18]
    Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Letters, 2010, 10(2): 490-493.
    [19]
    Zhou W, Kapetanakis M, Prange M, et al. Direct determination of the chemical bonding of individual impurities in graphene[J]. Physical Review Letters, 2012, 109(20):206803.
    [20]
    朱宏伟,徐志平,谢丹. 石墨烯——结构、制备方法与性能表征[M]. 北京:清华大学出版社,2011.
    [21]
    Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5 566-5 568.
    [22]
    Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Clarendon Press, 1987.

    Article Metrics

    Article views (14) PDF downloads(69)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return