ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry; Engineering & Materials 15 July 2024

Charge-balanced codoping enables exceeding doping limit and ultralow thermal conductivity

Cite this:
https://doi.org/10.52396/JUSTC-2024-0025
More Information
  • Author Bio:

    Long Chen is currently a master’s student at the School of Chemistry and Materials Science, University of Science and Technology of China, under the supervision of Prof. Changzheng Wu and Prof. Yongchun Zhu. His research mainly focuses on 2D materials with ultralow thermal transport properties

    Yongchun Zhu is currently a Professor at the University of Science and Technology of China (USTC). She received her Ph.D. degree from USTC in 2006. Her research interests include lithium-ion/sodium-ion batteries, aqueous batteries, metal–air battery and materials with ultralow thermal conductivity

    Changzheng Wu is currently a Professor at the University of Science and Technology of China (USTC). He received his Ph.D. degree from USTC in 2007. His research interests include preparation and characterization of two-dimensional materials with excellent physical properties, oxygen reduction catalysts and fuel cells, and relevant mechanism and functional application of transition metal oxide materials

  • Corresponding author: E-mail: ychzhu@ustc.edu.cn; E-mail: czwu@ustc.edu.cn
  • Received Date: 23 February 2024
  • Accepted Date: 01 April 2024
  • Available Online: 15 July 2024
  • Materials with low thermal conductivity are applied extensively in energy management, and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists. Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities. However, the amount of equivalent heavy-atom single dopant available is limited. Unfortunately, nonequivalent heavy dopants have finite solubility because of charge imbalance. Here, we propose a charge balance strategy for SnS by substituting Sn2+ with Ag+ and heavy Bi3+, improving the doping limit of Ag from 2% to 3%. Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously, scattering the phonons at both the atomic scale and nanoscale. The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m−1·K−1 at room temperature and 0.388 W·m−1·K−1 at 275 °C, which is below the amorphous limit of 0.450 W·m−1·K−1 for SnS. This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
    Ag, Bi codoping leads to ultralow thermal conductivity in SnS.
    Materials with low thermal conductivity are applied extensively in energy management, and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists. Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities. However, the amount of equivalent heavy-atom single dopant available is limited. Unfortunately, nonequivalent heavy dopants have finite solubility because of charge imbalance. Here, we propose a charge balance strategy for SnS by substituting Sn2+ with Ag+ and heavy Bi3+, improving the doping limit of Ag from 2% to 3%. Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously, scattering the phonons at both the atomic scale and nanoscale. The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m−1·K−1 at room temperature and 0.388 W·m−1·K−1 at 275 °C, which is below the amorphous limit of 0.450 W·m−1·K−1 for SnS. This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
    • Codoping Bi with Ag increases the solubility of Ag from 2% to 3% because of the charge balance, increasing the scattering center concentration to three times that of SnS doped with Ag alone.
    • The lowest thermal conductivity appears for Ag0.03Bi0.03Sn0.94S, 0.535 W·m−1·K−1 at room temperature and 0.388 W·m−1·K−1 at 275 °C, below the amorphous limit of SnS (0.45 W·m−1·K−1), which is a tremendous increase.
    • Point defects at the atomic scale and grain boundaries at the nanoscale scatter phonons synergistically, providing insight into ultralow thermal conductivity.

  • loading
  • [1]
    Liu S, Dun C C, Wei J L, et al. Creation of hollow silica-fiberglass soft ceramics for thermal insulation. Chem. Eng. J., 2023, 454: 140134. doi: 10.1016/j.cej.2022.140134
    [2]
    Lin X C, Li S L, Li W X, et al. Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater., 2023, 33 (27): 2214913. doi: 10.1002/adfm.202214913
    [3]
    Kim S E, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597 (7878): 660–665. doi: 10.1038/s41586-021-03867-8
    [4]
    Sarkar D, Ghosh T, Banik A, et al. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics. Angew. Chem. Int. Ed., 2020, 59 (27): 11115–11122. doi: 10.1002/anie.202003946
    [5]
    Zhou M, Li J F, Kita T. Nanostructured AgPb mSbTe m+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc., 2008, 130 (13): 4527–4532. doi: 10.1021/ja7110652
    [6]
    Qian X, Zhou J W, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater., 2021, 20 (9): 1188–1202. doi: 10.1038/s41563-021-00918-3
    [7]
    Jana M K, Biswas K. Crystalline solids with intrinsically low lattice thermal conductivity for thermoelectric energy conversion. ACS Energy Lett., 2018, 3 (6): 1315–1324. doi: 10.1021/acsenergylett.8b00435
    [8]
    Zhu H, Zhao C C, Nan P F, et al. Intrinsically low lattice thermal conductivity in natural superlattice (Bi2) m(Bi2Te3) n thermoelectric materials. Chem. Mater., 2021, 33 (4): 1140–1148. doi: 10.1021/acs.chemmater.0c03691
    [9]
    Gibson Q D, Zhao T Q, Daniels L M, et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science, 2021, 373 (6558): 1017–1022. doi: 10.1126/science.abh1619
    [10]
    Ji R W, Lei M, Genevois C, et al. Multiple anion chemistry for ionic layer thickness tailoring in Bi2+2 nO2+2 nSe nX2 (X = Cl, Br) van der Waals semiconductors with low thermal conductivities. Chem. Mater., 2022, 34 (10): 4751–4764. doi: 10.1021/acs.chemmater.2c00786
    [11]
    Wang C, Xu H Y, Cheng H, et al. Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Sci. China Chem., 2022, 65 (5): 898–904. doi: 10.1007/s11426-021-1201-0
    [12]
    Su B, Han Z R, Jiang Y L, et al. Re-doped p-type thermoelectric SnSe polycrystals with enhanced power factor and high ZT > 2. Adv. Funct. Mater., 2023, 33 (37): 2301971. doi: 10.1002/adfm.202301971
    [13]
    Yuan J J, Jin K P, Shi Z, et al. Enhanced thermoelectric performance of polycrystalline SnSe by doping with the heavy rare earth element Yb. J. Alloy. Compd., 2022, 907: 164438. doi: 10.1016/j.jallcom.2022.164438
    [14]
    Feng D, Zheng F S, Wu D, et al. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27: 167–174. doi: 10.1016/j.nanoen.2016.07.003
    [15]
    Ning S, Huberman S C, Ding Z W, et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv. Mater., 2019, 31 (43): 1903738. doi: 10.1002/adma.201903738
    [16]
    Zhang T D, Pan W F, Ning S T, et al. Vacancy manipulation induced optimal carrier concentration, band convergence and low lattice thermal conductivity in nano-crystalline SnTe yielding superior thermoelectric performance. Adv. Funct. Mater., 2023, 33 (10): 2213761. doi: 10.1002/adfm.202213761
    [17]
    Xie H Y, Su X L, Hao S Q, et al. Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping. J. Am. Chem. Soc., 2019, 141 (47): 18900–18909. doi: 10.1021/jacs.9b10983
    [18]
    Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A, 2014, 2 (41): 17302–17306. doi: 10.1039/C4TA04462B
    [19]
    Collin M S, Venkatraman S K, Vijayakumar N, et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv., 2022, 7: 100094. doi: 10.1016/j.hazadv.2022.100094
    [20]
    Wu H, Lu X, Wang G Y, et al. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater., 2018, 8 (20): 1800087. doi: 10.1002/aenm.201800087
    [21]
    Wang Z Y, Wang D Y, Qiu Y T, et al. Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. J. Alloy. Compd., 2019, 789: 485–492. doi: 10.1016/j.jallcom.2019.03.031
    [22]
    Zhou B Q, Li S, Li W, et al. Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces, 2017, 9 (39): 34033–34041. doi: 10.1021/acsami.7b08770
    [23]
    HU X G, HE W K, WANG D Y, et al. Thermoelectric transport properties of n-type tin sulfide. Scripta Mater., 2019, 170: 99–105. doi: 10.1016/j.scriptamat.2019.05.043
    [24]
    Čermák P, Hejtmánek J, Plecháček T, et al. Thermoelectric properties and stability of Tl-doped SnS. J. Alloy. Compd., 2019, 811: 151902. doi: 10.1016/j.jallcom.2019.151902
    [25]
    Asfandiyar, Cai B W, Zhao L D, et al. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J. Materiomics, 2020, 6 (1): 77–85. doi: 10.1016/j.jmat.2019.12.003
    [26]
    Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46 (10): 6131–6140. doi: 10.1103/PhysRevB.46.6131
    [27]
    Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 2015, 92 (11): 115202. doi: 10.1103/PhysRevB.92.115202
    [28]
    Ding G Q, Gao G Y, Yao K L. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep., 2015, 5: 9567. doi: 10.1038/srep09567
    [29]
    Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J Mater. Chem. C, 2019, 7 (11): 3351–3359. doi: 10.1039/C8TC05711G
    [30]
    Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508 (7496): 373–377. doi: 10.1038/nature13184
    [31]
    Chen Q L, Lu P X, Hao Y L, et al. Morphology, structure and properties of Bi2S3 nanocrystals: role of mixed valence effects of cobalt. J. Mater. Sci.: Mater. Electron., 2021, 32 (19): 24459–24483. doi: 10.1007/s10854-021-06925-z
    [32]
    He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0. 09 crystals. Science, 2019, 365 (6460): 1418–1424. doi: 10.1126/science.aax5123
    [33]
    Xie H Y, Li Z, Liu Y K, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc., 2023, 145 (5): 3211–3220. doi: 10.1021/jacs.2c13179
    [34]
    Chandra S, Bhat U, Dutta P, et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater., 2022, 34 (40): 2203725. doi: 10.1002/adma.202203725
    [35]
    He J G, Xia Y, Naghavi S S, et al. Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity. Nat. Commun., 2019, 10: 719. doi: 10.1038/s41467-019-08542-1
    [36]
    Xiao Y, Wu H J, Cui J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci., 2018, 11 (9): 2486–2495. doi: 10.1039/C8EE01151F
    [37]
    Xing T, Zhu C X, Song Q F, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe. Adv. Mater., 2021, 33 (17): 2008773. doi: 10.1002/adma.202008773
    [38]
    Chen H L, Chen J X, Si J C, et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci., 2020, 11 (15): 3952–3958. doi: 10.1039/C9SC06548B
    [39]
    Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489 (7416): 414–418. doi: 10.1038/nature11439
    [40]
    Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116 (19): 12123–12149. doi: 10.1021/acs.chemrev.6b00255
  • JUSTC-2024-0025 Supporting information.docx
  • 加载中

Catalog

    Figure  1.  (a) Illustration of atomic mass of metals with trivalent ions. Darker colors mean heavier atomic mass, and the radii of the circles reflect of their trivalent ions. Top scheme shows phonons’ group velocity declines when meeting with heavier atoms. (b) Illustration of SnS crystal structure and changes after charge balance codoping, in which gray, yellow, purple, and green balls refers to Sn2+, S2−, Bi3+, and Ag+, respectively.

    Figure  2.  (a) XRD patterns of Sn1-2xAgxBixS (x = 0, 0.01, 0.02, 0.03). (b) SEM‒EDS mapping of Sn0.94Ag0.03Bi0.03S, showing even dispersion. (c, d) SEM images of Sn0.94Ag0.03Bi0.03S pellets from top view and beveled view, respectively. XPS spectra of SnS and Sn0.94Ag0.03Bi0.03S: (e, f) 3d orbitals of Sn element; (g) 2p orbitals of S element and 4f orbitals of Bi; (h) 3d orbitals of Ag element.

    Figure  3.  Thermal transport properties of Sn1-2xAgxBixS (x = 0, 0.01, 0.02, 0.03). (a) Thermal conductivity parallel to the press. (b) Thermal conductivity vertical to the press. (c) Thermal diffusivity parallel to the press. (d) Comparison of ultralow thermal conductivity of SnS in previous researched and this work.

    Figure  4.  (a) HAADF-STEM image of Sn0.94Ag0.03Bi0.03S along the (100) direction, where Sn and S atoms are depicted in gray and yellow; the red circles are highlighted Bi atoms. The right panel shows the crystal structure of SnS in the same projection. (b) HRTEM-EDS mapping of Sn0.94Ag0.03Bi0.03S. (c, d) HRTEM images of SnS and Sn0.94Ag0.03Bi0.03S, respectively. Insets are enlarged images of selected areas. (e) FFT image of the selected area in (d), showing distinct two sets of diffraction spots.

    [1]
    Liu S, Dun C C, Wei J L, et al. Creation of hollow silica-fiberglass soft ceramics for thermal insulation. Chem. Eng. J., 2023, 454: 140134. doi: 10.1016/j.cej.2022.140134
    [2]
    Lin X C, Li S L, Li W X, et al. Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater., 2023, 33 (27): 2214913. doi: 10.1002/adfm.202214913
    [3]
    Kim S E, Mujid F, Rai A, et al. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597 (7878): 660–665. doi: 10.1038/s41586-021-03867-8
    [4]
    Sarkar D, Ghosh T, Banik A, et al. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics. Angew. Chem. Int. Ed., 2020, 59 (27): 11115–11122. doi: 10.1002/anie.202003946
    [5]
    Zhou M, Li J F, Kita T. Nanostructured AgPb mSbTe m+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc., 2008, 130 (13): 4527–4532. doi: 10.1021/ja7110652
    [6]
    Qian X, Zhou J W, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater., 2021, 20 (9): 1188–1202. doi: 10.1038/s41563-021-00918-3
    [7]
    Jana M K, Biswas K. Crystalline solids with intrinsically low lattice thermal conductivity for thermoelectric energy conversion. ACS Energy Lett., 2018, 3 (6): 1315–1324. doi: 10.1021/acsenergylett.8b00435
    [8]
    Zhu H, Zhao C C, Nan P F, et al. Intrinsically low lattice thermal conductivity in natural superlattice (Bi2) m(Bi2Te3) n thermoelectric materials. Chem. Mater., 2021, 33 (4): 1140–1148. doi: 10.1021/acs.chemmater.0c03691
    [9]
    Gibson Q D, Zhao T Q, Daniels L M, et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science, 2021, 373 (6558): 1017–1022. doi: 10.1126/science.abh1619
    [10]
    Ji R W, Lei M, Genevois C, et al. Multiple anion chemistry for ionic layer thickness tailoring in Bi2+2 nO2+2 nSe nX2 (X = Cl, Br) van der Waals semiconductors with low thermal conductivities. Chem. Mater., 2022, 34 (10): 4751–4764. doi: 10.1021/acs.chemmater.2c00786
    [11]
    Wang C, Xu H Y, Cheng H, et al. Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Sci. China Chem., 2022, 65 (5): 898–904. doi: 10.1007/s11426-021-1201-0
    [12]
    Su B, Han Z R, Jiang Y L, et al. Re-doped p-type thermoelectric SnSe polycrystals with enhanced power factor and high ZT > 2. Adv. Funct. Mater., 2023, 33 (37): 2301971. doi: 10.1002/adfm.202301971
    [13]
    Yuan J J, Jin K P, Shi Z, et al. Enhanced thermoelectric performance of polycrystalline SnSe by doping with the heavy rare earth element Yb. J. Alloy. Compd., 2022, 907: 164438. doi: 10.1016/j.jallcom.2022.164438
    [14]
    Feng D, Zheng F S, Wu D, et al. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27: 167–174. doi: 10.1016/j.nanoen.2016.07.003
    [15]
    Ning S, Huberman S C, Ding Z W, et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv. Mater., 2019, 31 (43): 1903738. doi: 10.1002/adma.201903738
    [16]
    Zhang T D, Pan W F, Ning S T, et al. Vacancy manipulation induced optimal carrier concentration, band convergence and low lattice thermal conductivity in nano-crystalline SnTe yielding superior thermoelectric performance. Adv. Funct. Mater., 2023, 33 (10): 2213761. doi: 10.1002/adfm.202213761
    [17]
    Xie H Y, Su X L, Hao S Q, et al. Large thermal conductivity drops in the diamondoid lattice of CuFeS2 by discordant atom doping. J. Am. Chem. Soc., 2019, 141 (47): 18900–18909. doi: 10.1021/jacs.9b10983
    [18]
    Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A, 2014, 2 (41): 17302–17306. doi: 10.1039/C4TA04462B
    [19]
    Collin M S, Venkatraman S K, Vijayakumar N, et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv., 2022, 7: 100094. doi: 10.1016/j.hazadv.2022.100094
    [20]
    Wu H, Lu X, Wang G Y, et al. Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv. Energy Mater., 2018, 8 (20): 1800087. doi: 10.1002/aenm.201800087
    [21]
    Wang Z Y, Wang D Y, Qiu Y T, et al. Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. J. Alloy. Compd., 2019, 789: 485–492. doi: 10.1016/j.jallcom.2019.03.031
    [22]
    Zhou B Q, Li S, Li W, et al. Thermoelectric properties of SnS with Na-doping. ACS Appl. Mater. Interfaces, 2017, 9 (39): 34033–34041. doi: 10.1021/acsami.7b08770
    [23]
    HU X G, HE W K, WANG D Y, et al. Thermoelectric transport properties of n-type tin sulfide. Scripta Mater., 2019, 170: 99–105. doi: 10.1016/j.scriptamat.2019.05.043
    [24]
    Čermák P, Hejtmánek J, Plecháček T, et al. Thermoelectric properties and stability of Tl-doped SnS. J. Alloy. Compd., 2019, 811: 151902. doi: 10.1016/j.jallcom.2019.151902
    [25]
    Asfandiyar, Cai B W, Zhao L D, et al. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J. Materiomics, 2020, 6 (1): 77–85. doi: 10.1016/j.jmat.2019.12.003
    [26]
    Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 1992, 46 (10): 6131–6140. doi: 10.1103/PhysRevB.46.6131
    [27]
    Guo R Q, Wang X J, Kuang Y D, et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 2015, 92 (11): 115202. doi: 10.1103/PhysRevB.92.115202
    [28]
    Ding G Q, Gao G Y, Yao K L. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep., 2015, 5: 9567. doi: 10.1038/srep09567
    [29]
    Yang H Q, Wang X Y, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J Mater. Chem. C, 2019, 7 (11): 3351–3359. doi: 10.1039/C8TC05711G
    [30]
    Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508 (7496): 373–377. doi: 10.1038/nature13184
    [31]
    Chen Q L, Lu P X, Hao Y L, et al. Morphology, structure and properties of Bi2S3 nanocrystals: role of mixed valence effects of cobalt. J. Mater. Sci.: Mater. Electron., 2021, 32 (19): 24459–24483. doi: 10.1007/s10854-021-06925-z
    [32]
    He W K, Wang D Y, Wu H J, et al. High thermoelectric performance in low-cost SnS0.91Se0. 09 crystals. Science, 2019, 365 (6460): 1418–1424. doi: 10.1126/science.aax5123
    [33]
    Xie H Y, Li Z, Liu Y K, et al. Silver atom off-centering in diamondoid solid solutions causes crystallographic distortion and suppresses lattice thermal conductivity. J. Am. Chem. Soc., 2023, 145 (5): 3211–3220. doi: 10.1021/jacs.2c13179
    [34]
    Chandra S, Bhat U, Dutta P, et al. Modular nanostructures facilitate low thermal conductivity and ultra-high thermoelectric performance in n-type SnSe. Adv. Mater., 2022, 34 (40): 2203725. doi: 10.1002/adma.202203725
    [35]
    He J G, Xia Y, Naghavi S S, et al. Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity. Nat. Commun., 2019, 10: 719. doi: 10.1038/s41467-019-08542-1
    [36]
    Xiao Y, Wu H J, Cui J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci., 2018, 11 (9): 2486–2495. doi: 10.1039/C8EE01151F
    [37]
    Xing T, Zhu C X, Song Q F, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe. Adv. Mater., 2021, 33 (17): 2008773. doi: 10.1002/adma.202008773
    [38]
    Chen H L, Chen J X, Si J C, et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci., 2020, 11 (15): 3952–3958. doi: 10.1039/C9SC06548B
    [39]
    Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489 (7416): 414–418. doi: 10.1038/nature11439
    [40]
    Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116 (19): 12123–12149. doi: 10.1021/acs.chemrev.6b00255

    Article Metrics

    Article views (188) PDF downloads(559)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return