[1] |
Kheirizad I, Jalali A A, Khandani K. Stabilization of fractionalorder unstable delay systems by fractional-order controllers[J]. Journal of Systems and Control Engineering, 2012, 226(9):1 166-1 173.
|
[2] |
Luo Y, Chen Y Q. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems[J]. Automatica, 2012, 48(9): 2 159-2 167.
|
[3] |
Hohenbichler N. All stabilizing PID controllers for time delay systems[J]. Automatica, 2009; 45(11): 2 678-2 684.
|
[4] |
YU Tao, LIU Xiang, SUN Youxian. Frequency-domain design of PI Controllers for first-order systems with time delay[J]. Journal of University of Science and Technology of China, 2005, 35(S): 167-173.余涛, 刘翔, 孙优贤. 一阶时滞系统PI控制器的频率设计法[J]. 中国科学技术大学学报, 2005, 35(S): 167-173.
|
[5] |
Bellman R, Cooke K L. Differential-Difference Equations[M]. New York: Academic Press, 1963.
|
[6] |
De Paor A M, OMalley M. Controllers of Ziegler-Nichols type for unstable process with time delay[J]. International Journal of Control, 1989, 49(4): 1 273-1 284.
|
[7] |
Bahavarnia M, Tavazoei M. A new view to Ziegler-Nichols step response tuning method: Analytic non-fragility justification[J]. Journal of Process Control, 2013, 23(1): 23-33.
|
[8] |
Venkatashankar V, Chidambaram M. Design of P and PI controllers for unstable first-order plus time delay systems[J]. International Journal of Control, 1994, 60(1): 137-144.
|
[9] |
Ho W K, Xu W. PID tuning for unstable processes based on gain and phase-margin specifications[J]. IEE Proceedings of Control Theory and Applications, 1998, 145(5): 392-396.
|
[10] |
孙明玮,焦纲领,杨瑞光,等. PI控制下开环不稳定对象可行稳定裕度范围的研究[J].自动化学报,2011,37(3):385-388.
|
[11] |
Paraskevopoulos P N, Pasgianos G D, Arvanitis K G. PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 926-936.
|
[12] |
Normey-Rico J E, Camacho E F. Simple robust dead-time compensator for first-order plus dead-time unstable processes[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4 784-4 790.
|
[1] |
Kheirizad I, Jalali A A, Khandani K. Stabilization of fractionalorder unstable delay systems by fractional-order controllers[J]. Journal of Systems and Control Engineering, 2012, 226(9):1 166-1 173.
|
[2] |
Luo Y, Chen Y Q. Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems[J]. Automatica, 2012, 48(9): 2 159-2 167.
|
[3] |
Hohenbichler N. All stabilizing PID controllers for time delay systems[J]. Automatica, 2009; 45(11): 2 678-2 684.
|
[4] |
YU Tao, LIU Xiang, SUN Youxian. Frequency-domain design of PI Controllers for first-order systems with time delay[J]. Journal of University of Science and Technology of China, 2005, 35(S): 167-173.余涛, 刘翔, 孙优贤. 一阶时滞系统PI控制器的频率设计法[J]. 中国科学技术大学学报, 2005, 35(S): 167-173.
|
[5] |
Bellman R, Cooke K L. Differential-Difference Equations[M]. New York: Academic Press, 1963.
|
[6] |
De Paor A M, OMalley M. Controllers of Ziegler-Nichols type for unstable process with time delay[J]. International Journal of Control, 1989, 49(4): 1 273-1 284.
|
[7] |
Bahavarnia M, Tavazoei M. A new view to Ziegler-Nichols step response tuning method: Analytic non-fragility justification[J]. Journal of Process Control, 2013, 23(1): 23-33.
|
[8] |
Venkatashankar V, Chidambaram M. Design of P and PI controllers for unstable first-order plus time delay systems[J]. International Journal of Control, 1994, 60(1): 137-144.
|
[9] |
Ho W K, Xu W. PID tuning for unstable processes based on gain and phase-margin specifications[J]. IEE Proceedings of Control Theory and Applications, 1998, 145(5): 392-396.
|
[10] |
孙明玮,焦纲领,杨瑞光,等. PI控制下开环不稳定对象可行稳定裕度范围的研究[J].自动化学报,2011,37(3):385-388.
|
[11] |
Paraskevopoulos P N, Pasgianos G D, Arvanitis K G. PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 926-936.
|
[12] |
Normey-Rico J E, Camacho E F. Simple robust dead-time compensator for first-order plus dead-time unstable processes[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4 784-4 790.
|