[1] |
Sheng M, Zhang Z. On the decomposition theorem for intersection de Rham complexes. [2021-11-10]. https://arxiv.org/abs/1904.06651.
|
[2] |
Hartshorne R. Algebraic Geometry. Berlin: Springer, 1975.
|
[3] |
Schmid W. Variation of Hodge structure: The singularities of the period mapping. Inventiones Mathematicae, 1973, 22 (3): 211–319. doi: 10.1007/BF01389674
|
[4] |
Kashiwara M, Kawai T. Poincare lemma for a variation of polarized Hodge structure. In: Hodge Theory. Berlin: Springer, 1987.
|
[5] |
Cattani E, Kaplan A, Schmid W. L2 and intersection cohomologies for a polarizable variation of Hodge structure. Inventiones Mathematicae, 1987, 87: 217–252. doi: 10.1007/BF01389415
|
[6] |
Peters C, Steenbrink J. Mixed Hodge Structures. Berlin: Springer, 2008.
|
[7] |
Voisin C. Hodge Theory and Complex Algebraic Geometry I. Cambridge, UK: Cambridge University Press, 2003.
|
[1] |
Sheng M, Zhang Z. On the decomposition theorem for intersection de Rham complexes. [2021-11-10]. https://arxiv.org/abs/1904.06651.
|
[2] |
Hartshorne R. Algebraic Geometry. Berlin: Springer, 1975.
|
[3] |
Schmid W. Variation of Hodge structure: The singularities of the period mapping. Inventiones Mathematicae, 1973, 22 (3): 211–319. doi: 10.1007/BF01389674
|
[4] |
Kashiwara M, Kawai T. Poincare lemma for a variation of polarized Hodge structure. In: Hodge Theory. Berlin: Springer, 1987.
|
[5] |
Cattani E, Kaplan A, Schmid W. L2 and intersection cohomologies for a polarizable variation of Hodge structure. Inventiones Mathematicae, 1987, 87: 217–252. doi: 10.1007/BF01389415
|
[6] |
Peters C, Steenbrink J. Mixed Hodge Structures. Berlin: Springer, 2008.
|
[7] |
Voisin C. Hodge Theory and Complex Algebraic Geometry I. Cambridge, UK: Cambridge University Press, 2003.
|