• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

月球人类基地全光谱太阳能制氧新方法的建模与分析

Modeling and analysis of a novel oxygen production approach with full-spectrum solar energy for the lunar human base

  • 摘要: 建设月球人类基地是人类月球探测的重要目标之一。本文提出了一种利用太阳全光谱,将光热协同水分解与高温二氧化碳电解相结合的制氧方法。探讨了不同固体氧化物电解电池入口温度Te、紫外(UV)分离波长λ2、红外(IR)分离波长λ3和光伏电池材料下的最佳氧气生产速率。结果表明,固体氧化物电解电池的入口温度应尽可能高,以便将更多的二氧化碳转化为一氧化碳和氧气。此外,当紫外线分离波长约为385 nm时,分配给光反应和电解电池的太阳能比例最佳,制氧速率最高,为2.754×10−4 mol/s。另一方面,应在允许范围内尽可能增加红外分离波长,以增加分配给电解电池的太阳辐射量,从而提高制氧速率。同时,铜铟镓硒(CIGS)的分离波长更大,可以获得更高的制氧速率,达到3.560×10−4 mol/s。综上所述,本文所提出的综合制氧方法可为月球人类基地提供一种可行的供氧方案。

     

    Abstract: Building a lunar human base is one of the important goals of human lunar exploration. This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis, utilizing the full solar spectrum. The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_\mathrme , ultraviolet (UV) separation wavelengths \lambda _2 , infrared (IR) separation wavelengths \lambda _3 , and photovoltaic cell materials were explored. The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen. Furthermore, when the ultraviolet separation wavelength is approximately 385 nm, the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal, and the oxygen production rate is highest at 2.754×10−4 mol/s. Moreover, the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation. In addition, copper indium gallium selenide (CIGS) has a relatively large separation wavelength, which can result in a high oxygen production rate of 3.560×10−4 mol/s. The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.

     

/

返回文章
返回