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Our pipeline for dense 3D scene reconstruction is composed of a robust monocular depth estimation module, a metric depth recovery
module, and an RGB-D fusion module. With our robust depth model trained on enormous data and the proposed locally weighted lin-

ear regression method, we can achieve robust and accurate 3D scene shapes.
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Abstract: Monocular depth estimation methods have achieved excellent robustness on diverse scenes, usually by predict-
ing affine-invariant depth, up to an unknown scale and shift, rather than metric depth in that it is much easier to collect
large-scale affine-invariant depth training data. However, in some video-based scenarios such as video depth estimation
and 3D scene reconstruction, the unknown scale and shift residing in per-frame prediction may cause the predicted depth
to be inconsistent. To tackle this problem, we propose a locally weighted linear regression method to recoverthe scale and
shift map with very sparse anchor points, which ensures the consistency along consecutive frames. Extensive experiments
show that our method can drop the Rel error of existing state-of-the-art approaches by 50% at most over several zero-shot
benchmarks. Besides, we merge 6.3 million RGBD images to train robust depth models. By locally recovering scale and
shift, our produced ResNet50-backbone model even outperforms the state-of-the-art DPT ViT-Large model. Combined
with geometry-based reconstruction methods, we formulate a new dense 3D scene reconstruction pipeline, which benefits
from both the scale consistency of sparse points and the robustness of monocular methods. By performing simple per-

frame prediction over a video, the accurate 3D scene geometry can be recovered.

Keywords: 3D scene reconstruction; monocular depth estimation; locally weighted linear regression
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1 Introduction

Dense monocular depth estimation' is a fundamental task in
computer vision, which is important for a few downstream
applications, such as autonomous driving!'"'), virtual/aug-
mented reality (VR/AR)!" "), 3D scene understanding"*'* and
reconstruction'” ¥, Existing supervised approaches'*"! and
unsupervised methods™**! have made tremendous progress
in accuracy and robustness. To solve the generalization issue
over diverse scenes, current state-of-the-art methods, such as
MiDaSF!, LeReS!", ominidata!”, and DPT™, propose to merge
a large-scale multi-domains data and predict an affine-invari-
ant depth/inverse depth”.” Although strong generalizability
has been achieved, the predicted depth/inverse depth is up to
an unknown scale and shift. However, in many video-based
scenarios, such as autonomous driving and VR/AR, losing
metric information significantly limits its application. The
variant scale and shift in per-frame prediction will cause the
depth inconsistency and the failure of accurate 3D reconstruc-
tion over consecutive frames.

How to ensure the depth consistency over consecutive
frames is receiving increasing attention. Bian et al”*” em-
ploys an unsupervised paradigm and models the predicted
depth prediction as scale-invariant. They propose a geometric
consistency loss to implicitly learn the scale consistency over
consecutive frames. Similarly, CVD®! employs an unsuper-

vised method but does the inference training to ensure con-
sistency. By contrast, RCVD® takes the MiDaS model as the
depth prior and estimates consistent dense depth maps and
camera poses from a monocular video. They have achieved
promising visual consistency of depth maps. However, we
obverse that their reconstructed point clouds are still not so
satisfactory. Please see the supplemental material for more
detailed analyses. In this work, instead of the visual consist-
ency, we focus on geometric consistency, i.e., achieving the
3D scene reconstruction from consecutive frames.

Following previous methods, we enforce the model to pre-
dict an affine-invariant depth, thus recovering scale and shift
for the prediction is the main barrier for 3D scene reconstruc-
tion over a monocular video. Existing methods!* propose to
directly compute a scale and shift value from least-squares fit-
ting with the ground truth (GT), i.e. global recovery strategy.
However, we observe that the optimal scale and shift are al-
ways heteroscedastic. During practical application, the global
fitting does not consider the distribution difference between
affine-invariant depth and ground-truth depth, and fails to ef-
fectively align the local regions. In Figure 2(a), we show an
example error map visualization between the ground truth and
such global scale-shift recovered depth, and there exists a low-
frequency error clearly. Such a coarse alignment method can-
not recover a high-quality metric depth for reconstruction.

Motivated by this observation, we propose a local recov-
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ery strategy to recover the locally aligned metric depth. Con-
cretely, we employ the locally weighted linear regression as a
novel metric depth alignment method, and demonstrate that
heteroscedastic scale and shift maps can be recovered with as
few as 25 points by enforcing spatial smoothness. Rather than
fitting a unified scale map and shift map, i.e., sharing the
same scale and shift values over all coordinates of the image,
our local recovery strategy can retrieve a location-related
scale map and shift map to adjust the distribution of predic-
tion. Experiments show that our method can significantly im-
prove metric accuracy. Although some sparse anchor points
are required, compared with existing state-of-the-art depth
completion methods™ *, which generally take more than hun-
dreds to thousands of sparse points, our strategy requires
much fewer points than them. Also experimentally we show
that although completion methods have taken sparse depth
measurements as inputs, our method can further boost their
performance with our local recovery strategy.

Besides boosting performance, the second benefit of our
local recovery strategy is to better analyze the weakness of all
existing depth estimation methods, and guide the design and
choice of loss functions. The depth error can be decoupled in-
to two parts: the coarse misalignment error and the detail-
missing error. Compared with the error of global fitting, the
alleviated error achieved by the local recovery is the coarse
misalignment error, while the remaining one is the detail-
missing error. Through our re-local-alignment analytical ex-
periments in Table 3, we observe that current state-of-the-art
depth estimation methods, including supervised learning met-
ric depth, unsupervised learning scale-invariant depth, super-
vised learning affine-invariant depth, and depth completion,
all suffer from noticeable misalignment issue w.r.t. the
ground truth.

To achieve 3D scene reconstruction from a monocular
video, retrieving a strong and robust monocular depth predic-
tion model is also essential. We collect over 6.3 million im-
ages from the existing RGB-D datasets for training models
using backbones such as ResNet50*! and Swin-L", and in-
vestigate how much accuracy can we benefit from a large-
scale dataset. With the robust monocular depth and local re-
covery strategy, the metric depth can be recovered by locally
aligning with some sparse points.

The last challenge is how to obtain accurate sparse anchor
points as the metric guidance. For analytical evaluation, we
leverage the ground-truth depth to decouple and analyze the
composition of errors. For practical application, aligning with
ground-truth depth can be the upper bound of our local recov-
ery strategy. We perturb the ground truth manually and ana-
lyze the error to simulate the inaccuracy of sparse anchor
points. Also, The SfMP" can be employed to recover sparse
depth points on distinguishable feature points in practice.
Through per-frame alignment with such accurate guidance,
we can achieve geometrically consistent depth and perform
robust 3D scene reconstruction. Although existing geometry-
based methods, e.g., multi-view stereo reconstruction ],
also takes the similar paradigms of structure from motion
(SfM), their performance may suffer from inaccurate corres-
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pondences in low-texture regions. By contrast, our per-frame
prediction comes from our well-trained strong monocular
depth estimation model, which is much more robust in the
low-texture regions.

Finally, through applying the local recovery strategy, our
ResNet50 model drops the depth absolute relative error up to
50% on current affine-invariant depth evaluation benchmarks.
For 3D scene reconstruction, our pipeline significantly im-
proves both the accuracy and consistency, and achieves bet-
ter performance than related works on five NYU!"! videos. To
summarize, our main contributions are as follows:

e We propose a novel and effective metric depth recovery
strategy, i.e., locally weighted linear regression, which signi-
ficantly improves the accuracy of the recovered metric depth
with a very sparse set of anchor points. Extensive experi-
ments show that the depth absolute relative error of state-of-
the-art methods can drop up to 50% with our proposed method.

e Our local recovery strategy can be an analytical tool for
subsequent depth prediction works, enabling decoupling the
prediction errors and analyzing the weakness of their models.

e We train a robust monocular depth estimation model on
large diverse data that contains 6.3 million images in total.
We provide detailed analyses of its performance w.r.z. the
training dataset size using our analytical tool.

e Aiming at the video-based scenarios, by combining our
strong monocular depth estimation model with a geometry-
based method for retrieving high-confidence anchor points,
we design a new pipeline for robust and dense 3D scene re-
construction.

2 Materials and methods

The pipeline for our dense 3D scene reconstruction method is
shown in Figure 1. Overall, our pipeline contains robust data-
driven monocular depth estimation, a novel metric depth re-
covery, and RGB-D fusion™.

2.1 Our Pipeline for Dense 3D Scene Reconstruction

Robust Monocular Depth Estimation Module. Retrieving
robust and accurate depth maps from 2D images is signific-
ant for 3D scene reconstruction. In the supplementary materi-
al, we analyzed that the unsupervised depth estimation meth-
ods suffer from the weak supervision of photometric loss,
while inaccurate correspondences may degrade the accuracy
and robustness of MVS-based methods. Thus, the supervised
monocular depth estimation method is employed in our
pipeline, whose promising robustness and accuracy have been
demonstrated in recent works'™ ..

To retrieve strong monocular depth estimation models, we
collect over 6.3 million data from 14 diverse datasets, which
cover a wide range of scenes, camera poses, and camera in-
trinsic parameters. Following previous works, we enforce the
network to learn the affine-invariant depth. Several scale-shift
invariant losses are employed during training for better learn-
ing the inherent geometric information of depth maps, includ-
ing the pair-wise normal (PWN) loss", image-level normal-
ized regression (ILNR) loss', and multi-scale gradient (MSG)
loss"™ as follows.
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Fig. 1. The pipeline for dense 3D scene reconstruction. The robust monocular depth estimation model trained on 6.3 million images, locally weighted lin-
ear regression strategy, and TSDF fusion™ are the main components of our method.
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Here, n,; and n, represent the surface normal of sampled
point pair (Ai, Bi). n;,, and n}, are the corresponding ground
truth. 5?;’ =(d! = Myim)/ T i 18 the Z-score normalized ground-
truth depth, and ., and o, represent the mean and stand-
ard deviation of the trimmed ground-truth depth map, which
removes the nearest and farthest 10% values in advance. The
v+ and V! stand for the gradient at k-th scale along x and y
axis separately. The PWN loss samples M paired points on
edge, planar, and random regions to supervise the surface nor-
mal information. The ILNR loss is introduced to reduce the
average element-wise difference of N pixels between the pre-
dicted depth d; and the normalized ground truth c?j. The MSG
loss ensures the accurate depth gradients at K scales. The loss
function is balanced by hyperparameters @ and 3, which are
set to 1 and 0.2 individually in our experiments.

Metric Depth Recovery Module. In the supplemental ma-
terial, we analyzed the shape distortion and duplication
caused by inaccurate shifts and inconsistent scales, which en-
sures the importance of recovering accurate and consistent
scale-shift values along consecutive frames. Existing ap-
proaches recover a scale and a shift value for the depth map
using least-squares fitting with some anchor points, which
neglects the information of the distribution difference
between affine-invariant prediction and anchor points. In con-
trast, we propose to perform locally weighted linear regres-
sion to recover the metric depth (Refer to Section 2.2 in de-
tail). Compared to the global least-squares fitting, our local
recovery strategy generates a scale and a shift map for each
depth map, which can not only recover metric depth, but also
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correct the overall depth maps and ensure the accuracy and
consistency of 3D reconstruction:

Our proposed local recovery strategy leverages the sparse
anchor points obtained from SLAM system“, SfM al-
gorithms™-*", or some low-quality sensors, and can not only
boost the performance of depth estimation, but also be an ana-
lytical tool to decouple the prediction depth errors into the
coarse misalignment error and the detail missing error. Please
see Section 3.2 in detail.

RGB-D Fusion Module. Through per-frame depth estima-
tion and local recovery, locally scale-aligned monocular video
depths are obtained. But the subtle details may still remain
partially inconsistent between frames, which can cause out-
liers and duplication if we simply unproject it to 3D space
without post-processing. Therefore, we propose to fuse multi-
frame information with an RGB-D fusion module, which
takes the RGB frames, depth maps, camera poses, and intrins-
ic parameters as inputs. It balances the difference between
frames, filters out outliers and inconsistent regions between
frames, and outputs the fused dense 3D mesh or point cloud.

In this work, we employ the TSDF fusion”" to fuse mul-
tiple depth maps into a projective truncated signed distance
function (TSDF) voxel volume during reconstruction. The
sparse guided points used for local alignment can be obtained
from various SLAMF systems, SfMF-*" algorithms, and
some low-quality sensors such as ToF sensors of mobile
phones. Two strong and robust monocular depth estimation
models are trained based on ResNet50"” and Swin-LF" back-
bones, respectively.

2.2 Metric Depth Recovery

Monocular depth estimation methods!'*” have achieved
promising results on diverse scenes. The problem is that their
predicted depth/inverse depth is scale-shift-invariant, namely,
affine-invariant depth/inverse depth”’. Here we take the affine-
invariant depth as an example. To recover the metric depth, it
should be scaled and shifted, i.e., D = sD +6J, where D, D,
s, 6 and J are the recovered metric depth, predicted affine-in-
variant depth, scale, shift and all-ones matrix respectively.

DOI: 10.52396/JUSTC-2023-0061
JUSTC, 2023, 53(X):



Z]srg "

Towards 3D Scene Reconstruction from Locally Scale-Aligned Monocular Video Depth Xu et al.
Some methods propose to obtain them through a global least- min (y - XB..,)"'W,.(y — XB..), d,y € R™!
squares fitting method with ground-truth depth: - . , )
X=[d" 1] e R™W,, =diag(w,,w,,...,w,,)
min (y—XB)'(y—XB), X =[d,1] eR™ B = [500s0,,]7 € R
B wy uvs Yuy
ﬁ = [S, 0]T € RZXl,d,y € R'XXI ﬂu.v = (XTWu.VX)_lXTWu,vy
B=X"X)"X"y D=SoD+0, with D,S,D,0 c R"Y 3)

D=sD+6J, with D,D,J e R™" )

where y is the flattened ground-truth metric depth, X is the
homogeneous representation of the flattened predicted depth
d, n=HXW represents the flattened length of depth map
with a shape of (H,W). B is composed of scale value s and
shift value 6, and B is the optimized value of B. Note that the
scale value s and shift value 6 can be regarded as a scale map
S and a shift map © shared on the whole map.

However, such a globally scaling and shifting method of-
ten fails to reduce the spatially heteroscedastic errors, which
follow a rather simple pattern. For example, we visualize the
pixel-wise absolute relative error map between the ground
truth and the globally recovered predicted depth in Figure 2(a),
and observe the existence of the low-frequency spatial error.
We see that the left part has a higher error than that of the
right part. Motivated by this observation, we propose to lever-
age a locally recovering method, i.e., locally weighted linear
regression (LWLR), to recover a scale and a shift map.
Guided by very sparse ground-truth points, we can fix and
quantify these low-rank spatial errors which are common in
depth estimation tasks.

Locally Weighted Linear Regression. We thus employ a
locally weighted regression method, which is:

(b) (d)

where y is the sampled sparse ground-truth metric depth (we
use around 25..100 points in practice), X is the homogen-
eous representation of the sampled sparse predicted depth d,
m stands for the number of sampled points.

Different from recovering a scale-shift value or a globally
shared scale-shift map by the global least-squares fitting
method, we recover a location-aware scale-shift map. For
each 2D coordinate («,v), the predicted depth d can be fitted
to the ground-truth depth y by minimizing the squared loc-
ally weighted ¢, distance, which is re-weighted by a diagonal
weight matrix W,,. It pays more attention to sparse points
closer to the estimated location, based on the idea that points
near each other in the explanatory variable space are more
likely to be related in a simple way. By iterating over the
whole image, the scale map § and shift map ® can be gener-
ated composed of the scale values s,, and shift values 6,, of
each location (u,v). Finally, the locally recovered metric
depth D equals to the shift map © plus the Hadamard product
(®, known as element-wise product) of the affine-invariant
depth pD and the scale map S. In our implementation, we em-
ploy a Gaussian kernel function to compute the weight mat-
rix:

# —— Ideal Linear Relation

- Sampled Points
101214161820
Ground Truth (m)
(e)
20
=18
§ 1.6
S 14
Q
E 12 —— Ideal Linear Relation
10 - Sampled Points
1012141618 2.0
Grounc%ff)l“ruth (m)

Fig. 2. The per-pixel error maps of ground-truth depth and predicted depth aligned through (a) global recovery and (b) local recovery, respectively. (c)
The scale map and (d) the shift map of local recovery. Distribution of prediction-GT pairs obtained via (e) global recovery and (f) local recovery indi-

vidually.
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w; N.r exp(
where b is the bandwidth of Gaussian kernel, and dist; is the
Euclidean distance between the guided point (u;,v;) and target
point (u,v).

The scale map and shift map obtained this way can yield
much more accurate metric depth than the global methods.
However, some scale maps can be fitted to negative due to the
shift-invariant characteristic of monocular depth and flexibil-
ity of weighted linear regression, which inverses the distribu-
tion of depth prediction and lacks reasonableness. Since the
bias is not centered and the solution space is not bounded,
results are widely distributed with no physical meanings and
far from the real scale and shift. Therefore, we conduct the
global recovery strategy to monocular depth first, and restrict
the solution to be simple by adding an £, regularization on the
shift:

min (y-XB,.)'W..(y - XB.,) + 16,
Buy

X=[d" 1] eR™W,, = diag(w,, ws,..,w,)

ﬂu,v = [Suyteu,v]T € sz'y d,y S Rle

Bo= XWX+ A XW,y.a=[§ ]
D=SoD+0, with D,S,D,0ecR"™ (5)

where X is the homogeneous representation of the globally
recovered depth d. With the regularization of shift, the loca-
tion-related scale map is encouraged to be positive. Please see
supplemental material for the visualization of the scale value
distribution.

With our proposed local recovery strategy, we only need
very sparse ground-truth depth (around 25-100 points) to re-
cover the metric depth map by fitting a location-related scale
map and a shift map. Figure 2 compares the global least-
squares fitting and our proposed weighted linear regression
results. Thanks to the optimized pixel-wise scale map
(Figure 2(c)) and shift map (Figure 2(d)), the overall loss is
reduced considerably (Figure 2(b)). Note that the predicted
affine-invariant depths are the same for the two methods. Im-
portantly, the recovered metric depth with our method is more
linearly correlated to the ground truth (see Figure 2(e) and
Figure 2(f)). Please see supplemental material for more ex-

amples.

3 Results and Discussion

The components of training datasets, the implementation de-
tails, and the evaluation details can be found in the supple-
mental material.

3.1 Dense 3D Scene Reconstruction

With our model trained on 6.3 million data and the local scale
and shift recovery method, we can achieve high-quality 3D
scene reconstruction through per-frame prediction and TSDF
fusion™. To evaluate the consistency and accuracy, we' col-
lect 5 NYU videos and compare with the single image 3D re-
construction method (LeReS™), the state-of-the-art depth
completion method (NLSPN™), the robust consistent video
depth estimation method (RCVD"), the unsupervised video
depth estimation method SC-DepthV2F and the learning-
based MVS method DPSNet"". Note that NLSPN and SC-
DepthV2 are trained on NYU, and only NLSPN can predict
metric depth. Our method uses the same sparse ground truth
(100 points) as NLSPN. For LeReS and RCVD, we align
their predictions with metric depth globally. For SC-DepthV2
and DPSNet, only global scale values are recovered by ensur-
ing the same medians as the ground truth. Besides leveraging
sparse ground truth, we also sample points from SfM meth-
ods, e.g., COLMAPY!, to reconstruct a 3D scene with an
RGB video, ground-truth intrinsic and poses. The Rel, ¢;, the
Chamfer [, distance and the F-score with the threshold of 5
cm are employed for evaluation.

Quantitative comparisons are shown in Table 1. First, we
compare with the depth completion method NLSPN™!, which
alsouses the sparse guided points to obtain metric informa-
tion. The main difference is that their model should be trained
on the testing set and lacks generalization in the wild. By con-
trast, we can achieve better performance and generalize well
to zero-shot datasets due to the robust depth prior. RCVD
and SC-DepthV2P” aim to solve the visual consistency prob-
lem for video depth prediction. LeReS™ reconstructs 3D
scene shape from a single image and performs well in the
wild. DPSNet" leverages CNNs to extract features and
match between frames automatically. Before evaluating, the
NLSPN and SC-depthV2 have been trained on the NYU data-

Table 1. Quantitative comparison of monocular depth estimation and 3D scene reconstruction with diverse related methods!-*"****I on five NYU scen-

arios.

Basement 0001a

Bedroom 0015

Dining_room_0004 Kitchen 0008 Classroom_0004

Method Sparse Points
Rel| 617 C-l1] F-scoret Rel| 611 C-li] F-scoret Rel| 611 C-li] F-scoret Rel| 611 C-l1] F-scoret Rel| 017 C-I1| F-scoret

RCVD™ All 13.787.60.364 0.276 7.6 95.30.074 0.582 16.7 77.40.462 0.251 9.0 95.40.053 0.620 11.388.10.187 0.327
SC-DepthV2:! All 19.875.00.254 0.275 7.5 99.40.064 0.547 ) 9.8 90.20.749 0.229 ) 5.4 99.60.049 0.624 12.388.00.167 0.267
DPSNet* All 19.162.30.243 0.299 16.278.20.195 0.276 21.1 65.70.995 0.186 18.676.40.269 0.203 18.962.90.296 0.195
NLSPN®! 100 6.6 93.70.065 '0.605 3.3 97.30.028 0.879 5.7 92.60.073 0.571 2.7 98.60.027 0.901 6.0 93.10.052 0.670
LeReS!" All 7.1 95.30.081 0.555 5.8 97.80.064 0.616 6.5 95.40.120 0.448 5.5 99.00.035 0.776 6.9 96.00.058 0.600
Ours (global) All 8.9 92.50.085 0.525 5.9 97.60.053 0.629 6.2 96.00.111 0.474 2.7 99.80.033 0.798 6.4 96.00.061 0.570
Ours-SfM (local) 25 7.5 94.80.085 0.548 6.5 93.00.092 0.627 7.0 94.00.096 0.496 4.2 99.20.111 0.629 6.4 95.70.129 0.462
Ours (local) 100 5.2 97.10.061 0.645 3.1 98.80.025 0.886 3.7 98.10.073 0.587 1.6 99.80.018 0.958 4.3 97.50.049 0.674

-5

DOI: 10.52396/JUSTC-2023-0061
JUSTC, 2023, 53(X):



Zzsrg "

Towards 3D Scene Reconstruction from Locally Scale-Aligned Monocular Video Depth

Xu et al.

set. The "global" and "local" represent global and our pro-
posed local metric depth recovery strategies separately. Ours-
SfM (local) means performing the local recovery strategy
with points sampled from SfMF-*7 depth. As a result, our
pipeline of 3D scene reconstruction from video achieves state-
of-the-art performance on all five scenes.

Experiments of qualitative comparison are shown in the
supplemental material. Depth completion method NLSPN
performs well but misses some high-quality details due to the
lack of geometry supervision during training. The RCVD fo-
cuses on visual depth consistency but fails to recover the shift
of depth maps, leading to the distortion of the 3D structure.
The SC-depthV2 achieves visually consistent video depth
through an unsupervised paradigm, but the weak supervision
brings some distortion during reconstruction. The LeReS
achieves excellent detail prediction but lacks consistency
between frames for misalignment caused by the global recov-
ery strategy. The DPSNet improves the quality of extracted
features with the help of CNNs, but without training on the
NYU dataset, it lacks robustness to generalize to some un-
seen scenarios. With our local recovery strategy, our method
can reconstruct better 3D point clouds than others. For Ours-
SfM (local), we obtain SfM depth first, then fit the monocu-
lar depth with SfM depth and filter out the errors bigger than
the 99th-percentile iteratively, before performing the local re-
covery strategy. Note that even with slightly inaccurate sparse
SfM points, Ours-SfM (local) can still achieve comparable
results with Ours(global), which requires ground-truth depth
acquired from sensors.

3.2 Monocular Depth Estimation

Comparison with State-of-the-Art Methods. In this experi-
ment, we compare with state-of-the-art robust monocular
depth estimation methods! ***! on five zero-shot datasets,
whose scale and shift are recovered with a globally least-
squares fitting method. During evaluation, the latest released
model weights are adopted uniformly. As shown in Table 2,

our ResNet50™" model outperforms other ResNet50 and Res-
NeXt101%" models on four testing datasets, and our Swin-L""
model achieves comparable results with the ViT-large"” mod-
el of DPT™. Through recovering scale and shift with the pro-
posed locally weighted linear regression method, our method
with ResNet50 and Swin-L backbones (i.e., "Ours-R50
(local)", "Ours-swin (local)") can outperform all previous
methods and our global predictions by a large margin over all
zero-shot testing datasets. The qualitative comparison can be
found in the supplemental material.

Effectiveness of Locally Weighted Linear Regression.
To demonstrate our proposed locally weighted linear regres-
sion can boost various monocular depth estimation methods,
we enforce it on several different methods: 1) learning affine-
invariant depth methods, e.g., LeReS!", MiDaS", and DPT™;
2) learning metric depth on a specific dataset (VNL™); 3)
learning scale-invariant depth with unsupervised methods
(MonoDepth2t1); 4) depth completion method (NLSPNFY).
Results are shown in Table 3. We uniformly sample 100
guided points to perform the local recovery, and all their per-
formances can be boosted significantly (see the "w"
columns). Critically, even though the NLSPN method has in-
put such 100 sampled points for completion, our method can
still further boost its performance. Note that the latest re-
leased weights and code are used for this experiment, NLSPN
(KITTI) and Monodepth2 are trained on the KITTI dataset,
and NLSPN (NYU) and VNL are trained on the NYU dataset.

Decoupling of Monocular Depth Error. Besides improv-
ing performance, the local recovery strategy is also per-
formed to decouple monocular depth error between ground
truth and globally aligned prediction into coarse misalign-
ment error and detail-missing error. Compared with the error
of global recovery, the alleviated error brought by local re-
covery represents the coarse misalignment error, and the re-
maining one stands for detail-missing error. Asshownin Table 3,
the percentage of coarse misalignment error ("%" columns)

Table 2. Quantitative comparison of monocular depth estimation with state-of-the-art methods on five unseen datasets. The numbers in brackets repres-

ent the reduced absolute relative error brought by our local recovery method.

KITTI NYU ScanNet ETH3D DIODE
Method Backbone Rank
Rel| %) Rel| 011 Rel| 011 Rel| 017 Rel] 017
OASIS" ResNet50™ 31.7 43.7 21.9 66.8 19.8 69.7 29.2 59.5 48.4 534 127
MegaDepth'! ResNet50™ 20.1 63.3 19.4 71.4 19.0 71.2 26.0 64.3 39.1 61.5 107
Xian et al. ¥ ResNet502 27.0 52.9 16.6 77.2 17.4 75.9 27.3 63.0 425 61.8 10.7
WSVDP! ResNet502” 24.4 60.2 22.6 65.0 18.9 71.4 26.1 61.9 35.8 63.8 108
Chen et al. ™" ResNet502 32.7 51.2 16.6 71.3 16.5 76.7 23.7 67.2 37.9 66.0 9.7
DiverseDepth!” ResNet50% 19.0 70.4 11.7 87.5 10.8 88.2 22.8 69.4 37.6 63.1 83
LeReS!" ResNext1011 14.8 78.6 8.6 92.1 9.5 91.2 9.7 90.3 21.6 80.8 5.7
MiDaS-large!” ResNext1011 13.4 81.9 10.2 90.0 9.8 90.9 10.1 90.5 19.0 76.1 63
DPT-large®” ViT-Large!*” 10.0 90.1 9.8 90.3 7.8 93.8 7.8 94.6 18.2 75.8 4.2
Ours-R50 (global) ResNet502 10.9 88.5 8.2 92.6 8.9 92.0 8.4 92.1 22.0 80.1 4.6
Ours-swin (global) Swin-LE” 11.2 88.3 7.2 94.1 7.2 94.5 8.1 93.9 224 795 42
Ours-R50 (local) ResNet50®)  5.7(-52) 954 4.7(-35) 969 43(-4.6) 974 50(34) 966 165(-55 852 1.6
Ours-swin (local) Swin-LE 58(-54) 950 45(27) 971 38(34) 979 4.7(-34) 967 165(-59) 851 13
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Table 3. Boosting various monocular depth estimations with our local recovery method. We compare the accuracy without ("w/o") and with ("w") our re-

covery methods, and show the reduced errors and percentages ("w" and "%").

KITTI NYU ScanNet ETH3D DIODE
Method Type Rel|
w/o w % w/o w % w/o w % w/o w % w/o w %
8.0 4 4.8 4.4 5.6 16.2
1 — 0, — 0, — 0, — 0,
LeReS 14.8 (-6.8) 6 8.6 38) 44% 9.5 5.1) 54% 9.7 a1 42% 21.6 (-5.4) 25%
. Affine-invariant %
MiDaS- 62 . R 43 49 145
Jarge!? 134 72) 54% 10.2 s.1) 50% 9.8 (-5.5) 56% 10.1 (-5.2) 52% 19.0 (-45) 24%
11;1;‘; 10.0 (75428) —48% 9.8 (j 408) -49% 7.8 (j 480) -51% 7.8 (*43'»26) —54% 182 (1‘;'3) —21%
NLSPN® Coﬁ;‘ﬁ‘ion 43 (—3676) % 37 —363 H 1% - - - - - - - -
. . ' 4.0
gl — — — —62° — — — — — — — — =
VNL Metric o 10.6 (~6.6) 62%
Monodepth2®!  Scale-invariant 8.1 (72' 0) -25% - - - - - - - - - - y

nearly remains consistent between affine-invariant depth es-
timation, which may reveal the drawback of coarse misalign-
ment of monocular depth estimation. The bottleneck of
NLSPN™! and MonoDepth2?! is detail-missing for the allevi-
ated error in percentage remains small.

3.3 Ablation Study

Ablation Study for Training Data. In this experiment, we
aim to study the relations between data volume and perform-
ance improvement. We gradually aggregate more data for
training, and evaluate the performance on 5 zero-shot data-
sets. Note that 3 different quality data sources are increased in
balance, and the results are illustrated in Table 4. We can ob-
serve that when the data size increases from 42K to 900K
(around by 20 times), the performance is boosted signific-
antly. However, when further increased by 7 times, the accur-
acy can only be improved slightly. We conjecture that such
large-scale data has fully exploited the capacity of the model
(ResNet50 backbone).

Furthermore, we also conduct local recovery here to de-

couple the error into coarse misalignment error and detail-
missing error. As shown in Table 4, the percentage of coarse
misalignment error remains nearly constant, which shows the
model can study the detail information and the global struc-
ture simultaneously.

Ablation Study for Locally Weighted Linear Regres-
sion Method. The performance of our proposed local recov-
ery strategy may be affected by the amount of sparse points,
the sparsity distribution, random noises from sparse points,
and the bandwidth b. Their effects on the depth accuracy are
explored and shown in Table 5. Here, "Amount", "Distribu-
tion", and "Noise" correspond to the number, distribution, and
maximum perturbation percentage of the sampled ground
truth. Parameter b represents the bandwidth of the Gaussian
kernel function. "Grid" means sampling points from the ver-
texes of the evenly divided image plane, and "Uniform"
means sampling randomly. The whole image and half image
stand for only sampling ground truth from the original whole
or half image. All experiments are conducted on the

Table 4. Ablation study for training data of our robust depth estimation module. With the increase of data, the performance of depth estimation improves

gradually.
KITTI NYU ScanNet ETH3D DIODE
Training Data Rel,
Global Recovery
42K 14.1 11.0 11.8 9.5 232
352K 15.0 9.2 10.0 9.4 22.1
900K 11.5 8.6 9.7 9.0 21.6
3.8M 11.1 8.2 8.9 8.4 21.9
6.3M 10.9 8.2 8.9 8.4 22.0
Local Recovery
42K 6.9 (-51%) 5.8 (—47%) 5.2 (=56%) 5.9 (=38%) 16.9 (—27%)
352K 7.3 (—=51%) 5.2 (—43%) 4.7 (—53%) 6.2 (—34%) 16.6 (—25%)
900K 5.8 (=50%) 4.9 (—43%) 4.6 (—53%) 5.4 (—40%) 16.3 (—25%)
3.8M 5.8 (—48%) 4.7 (—43%) 4.3 (=52%) 5.2 (-38%) 16.5 (—25%)
6.3M 5.7 (—48%) 4.7 (—43%) 4.3 (—52%) 5.0 (—40%) 16.5 (—25%)
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Table 5. Ablation study for parameters of our proposed local recovery

strategy.
NYU
Amount Distribution Noise b
Rel| 61t
10x10 Grid 0% 50 4.8 96.4
5%5 Grid 0% 50 5.8 94.7
20%20 Grid 0% 50 4.6 96.7
10x10 Grid 0% 25 4.7 96.0
10x10 Grid 0% 100 5.8 95.5
10x10 Grid 10% 50 5.5 96.2
10x10 Grid 20% 50 6.8 95.5
100 Uniform (whole image) 0% 50 43 97.0
100 Uniform (half image) 0% 50 11.3 87.6
NYU dataset.

According to the experiments, simple 5x5 ground-truth
depth can be leveraged to recover metric depth and improve
accuracy. More ground truth leads to more performance
boost, please see Table 6 for more detailed analysis. The
"Global" and "Local" represent the global recovery and local
recovery strategies separately. "Grid" and "Uniform" stand

Table 6. Analysis for the amount of ground-truth points during recover-
ing monocular metric depth. The Rel decreases faster with our proposed
local recovery strategy with the increase of ground-truth points.

Ground-Truth  Local-UniformGlobal-UniformLocal-GridGlobal-Grid

Points Rel|
1 73.84 73.84 74.43 74.43
2 27.1 27.1 -
3 14.73 14.78 -
4 12.77 13.15 9.33 10.23
5 10.73 11.23 -
6 9.56 10.2 - &
7 9.13 10.07 R
8 8.85 9.85 3 -
9 8.49 9.74 7.1 9.18
16 7.09 9.11 5.9 8.76
25 6.17 8.68 5.38 8.62
36 5.74 8.56 5.12 8.52
49 54 8.36 5.06 8.58
64 5.2 8.33 4.92 8.49
81 5.06 8.4 4.79 8.48
100 49 8.41 4.68 8.46
144 4.78 8.34 4.55 8.43
196 4.62 8.26 4.47 8.42
256 4.57 8.28 44 8.33
324 4.49 8.24 435 8.35
400 4.42 8.21 43 8.34
900 4.23 8.24 4.13 8.27
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for sampling from grid and sampling uniformly. Our strategy
performs robust to the amount, distribution and noise of
sparse points, but the overly concentrated sampling strategy
should be avoided in practice.

As for bandwidth b, it represents the effect of distance on
the weight matrix. Experimentally, we suggest simply setting

parameter bandwidth to the value —, where [ is the width of

the RGB image and n is the numbe’; of sampled ground-truth
points of one side. More precisely, if we sample 10x10
ground-truth points for a 500x500 image, the parameter
bandwidth can be set to 50.

4 Conclusions

In this paper, we have leveraged the robust data-driven mon-
ocular depth estimation model, local recovery strategy and an
RGB-D fusion module to implement a complete dense 3D
scene reconstruction pipeline. Compared to existing 3D re-
construction methods, our pipeline achieves improved robust-
ness, accuracy and consistency along consecutive RGB
frames. Extensive experiments show that our method demon-
strates a significantly better generalization ability to. monocu-
lar depth estimation and 3D scene reconstruction.

The proposed local recovery strategy can not only improve
the accuracy and consistency of depth estimation signific-
antly with robustness to both the amount and randomly-gen-
erated noises of the ground truth, but also can be an analytic-
al tool to expose the shortcomings of existing depth estima-
tion methods.

Supplemental Information

The supplemental information includes three sections, eight
figures, and two tables. We first elaborate on some prelimin-
ary information of existing 3D scene reconstruction methods
and affine-invariant depth estimation. Then, we introduce
some related works. Finally, the experimental details and
more visualization are supplied.
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