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Abstract: Bowley reinsurance with asymmetric information means that the insurer and reinsurer are both presented with
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1 Introduction

Reinsurance is an effective risk management tool in today’s
complex business environment and has been an important re-
search field. Since the seminal paper of Borch', optimal
(re)insurance design problems have been widely studied in
the literature. Borch™ showed that stop-loss reinsurance is op-
timal by minimizing the variance of an insurer’s total risk ex-
posure under the expected value premium principle. Borch’s
result has constantly been extended in many directions. One
direction is to consider the expected utility maximization .
Another direction is to consider the same optimal problem under
the risk management framework. For example, Cai et al.”! and
Cheung! minimized the value-at-risk (VaR) and tail value-at-
risk (TVaR) of the insurer’s total risk exposure. Cui et al.l”
and Cheung et al.”! considered the problem under general
convex risk measures including VaR, TVaR, and distortion
risk measures as special cases.

As noted by Borch!"), an insurer and a reinsurer may have
conflicting interests under a reinsurance contract. If they co-
operate, in the same work, Borch gained the optimal reten-
tion of the quota-share and stop-loss reinsurance contracts to
maximize the product of individual expected utility at the end.
Following this way, this research line leads to Pareto-
optimal®'". Later, Borch"* considered that a reinsurance con-
tract could be attractive to one party, but may not be accept-
able to another. One of the best ways to solve this noncooper-
ative conflict between reinsurer and insurer is the theory of
Nash equilibrium!* ', Under different assumptions, Aase!
and Boonen et al.'! adopted the Nash bargaining framework
to price reinsurance contracts. Except for Nash equilibrium,
some other important equilibrium concepts, such as the
Bowley solution, the Stackelberg game, and the principal-
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agent problem, are also used in optimal reinsurance theory.
For instance, in a Stackelberg game, one player (the ‘leader’)
chooses first, and all other players (the ‘ followers’) move
after the leader. In other words, there is an order of the game;
once the buyer chooses her indemnity, then the seller cannot
modify its premium™ 7. And under the principal-agent prob-
lem, the principal (monopoly) has the right to determine the
optimal insurance contracts and the corresponding premiums
charged to each type of agents. Meanwhile, the principal can
only rely on the prior knowledge of the proportion of each
type, not the hidden characteristics of any single agent!'* "\,

Recently, there has been increasing interest in studying
Bowley reinsurance since Ref. [16]. Cheung et al.'” focused
on preferences given by distortion risk measures. As far as we
know, Chan et al.?” first used the nature of the reinsurer’s
monopolistic and built a Bowley solution (Stackelberg equi-
libria) of equilibrium reinsurance arrangements to maximize
the expected utility of both the insurer and reinsurer in order,
and then back. Motivated by Boonen et al.”" and Boonen et
al.”, we consider Bowley reinsurance solutions with asym-
metric information under the reinsurer’s default risk with a
general pricing principle. Asymmetric information refers to
that the insurer is given a distortion risk measure but the rein-
surer does not have any idea about the preferences of the in-
surer. The reinsurer sets the premium principle first to the in-
surer, and the insurer decides his own optimal reinsurance in-
demnity based on the premium principle. For the proceedings
of Bowley solutions, we refer to Ref. [22].

However, in the above mentioned papers involving Bowley
solutions, it is assumed that the reinsurer will be able to com-
pensate for the losses they commit. In reality, the reinsurer
could fail to pay the promised part of loss if the loss is huge,
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which is denoted as default risk. There is an extensive literat-
ure on default risk® . Therefore, the aim of the paper is to
fill the gap between default risk and the Bowley solutions.
We follow the framework of Asimit et al.”*! and Lo"". Note
that there is a difference between this paper and Ref. [24] in
calculating the premium principle. In this paper, the premium
principle bases on the promised part of loss whereas Asimit et
al.” considered the default risk. The reason for this is that
even if there exists default in a (re)insurance contract, the in-
surer does not know in advance. Our results indicate that the
optimal reinsurance indemnity depends on the default rate,
i.e., with the increase in the default rate, the insurer cedes less
risk to the reinsurer and retains more risk. Finally, examples
are also given to illustrate the main results, where the explicit
expressions for the optimal reinsurance treaties are provided.

The rest of this paper is organized as follows. Section 2
states the asymmetric information and default risk problem
studied in this paper. Section 3 solves this problem. In sec-
tion 4 we give two examples to illustrate the main result when
the two distortion functions of the insurer are ordered. Sec-
tion 5 concludes the paper.

2 Preliminaries

Throughout, let (Q,7,P) be a probability space. We assume
that the total loss faced by the insurer is denoted by a
bounded, nonnegative random loss variable X, and its cumu-
lative distribution function and survival function are denoted
by Fy and Sy, respectively. We assume that both the insurer
and the reinsurer are known about Fy and Sy. The quantile of
X at level pe[0,1] is denoted by F,'(p):=inf{xeR,|
Fy(x) > p}. Denote I,(s) as the indicator function such that
I,(s)=1 for s€e A and I,(s) =0 for s ¢ A. We also denote the
following two sets:

G.:={g:[0,11~[0,1]|g(0) = 0,g(1) =1,
g is a nondecreasing and left-continuous},

and
G =1{g:[0,1] > R,|g is continuous and concave, g(0) = 0}.

2.1 Indemnities, distortion risk measures and premium
principles

To manage risk explosion, the insurer cedes the risk f(X) to

the reinsurer, where f(x) is called a ceded function. Avoid-

ing moral hazard or insurance swindles™!, we impose an in-

centive compatibility constraint on f, i.e., we assume that
feF with

F={f:R. pRIf(0)=0,
0< f(x)—f(y) <x—yforany0<y<ux}

Under the incentive compatibility constraint, it is easy to see
that f is almost everywhere differentiable on R,. Moreover,
there exists a Lebesgue integrable function 4:R, - [0,1]
such that

) = | hodr, x>0, (1)
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where & is the slope of the ceded loss function f. Zhuang
et al.® termed h as a marginal indemnification function.
Next, we discuss the preferences of the insurer. Following
most of the literature, we assume that the insurer wants to
minimize its distortion risk measure. The formal definition is
given below.

Definition 1. For g € G, or g € G, a functional p, of a non-
negative random variable Z is given by

p2)= [ g5 A2z, 2)

whenever the integral exists. When g € G,, we call p, as dis-
tortion risk measure.

Note that, the class of distortion risk measure is a big um-
brella under which many common risk measures fall, for ex-
ample the most notably VaR, whose definition is recalled
below.

Definition 2. The VaR of a random variable Z at the prob-
ability level of p € (0,1] is the left-continuous inverse of its
distribution function F, at p:

VaR,(Z) := F,'(p) = inf{x € RIF,(x) > p},

with the convention inf() = +co. The VaR is a distortion risk
measure with distortion function g(r) = I,_,,,(?).

When the insurer cedes loss f(X) to a reinsurer, the rein-
surer charges premium in turn. In this paper, we assume that
the premium principle is comonotonically additive and law
invariant, but not necessarily monotone. In particular, for any
ceded loss function f € and g, € G, we define the reinsur-
ance premium principle

1T, (F(X)) =(1 + OELX) +p,, (f(X)) =
(+OEFX)+ [ (S (hvydr, 0> -1, (3)

where & satisfies Eq. (1) and the second equality follows from
Lemma 1 below. Note that we do not require /7, to be mono-
tone because g.€G need not be monotone. The above
distortion-deviation premium principle /7, was recently intro-
duced by Liang et al.”*! who derived the form by analogy with
the mean-standard deviation premium principle. The
distortion-deviation premium principle encompasses a large
class of premium principles typically used in the literature,
such as the expected premium principle, Wang’s premium
principle®”, Gini premium principle, and the absolute devi-
ation premium principle®". Liang et al.”*! termed (3) as canon-
ical representation. They showed that there exist two func-
tions h,,h, € G such that

H&’r(f(X)) =p’11 [f(X)] +p/xz [f(X)],

where &, is nondecreasing and h, is a deviation distortion,
ie., h, € G and h,(0) = h,(1) = 0.

Finally, we end this subsection with a lemma, which is a
useful tool for our following analysis.

Lemma 1. Let f: R, — R, be a nondecreasing, absolutely
continuous function with f(0) =0 and Z be a nonnegative
random variable. Then, for g € G, or g € G, we have

P @)1= | g(S h(rydr,

DOI: 10.52396/JUSTC-2022-0111
JUSTC, 2024, 54(3): 0305



Zzsrg "

Zou et al.

where h is the derivative of f, which exists almost
everywhere.

2.2 Bowley reinsurance solutions with asymmetric in-
formation under default risk

The main goal in this paper is to incorporate default risk
under the setting of Bowley reinsurance with asymmetric in-
formation. We follow the framework of Asimit et al.”, who
were motivated by the recent implementation of the Solvency
Il regulatory framework in the countries of the European
Union. Assume that the reinsurer operates in a VaR-regulated
environment and thus prescribes its regulatory capital in ac-
cordance with the B-level VaR of the reinsured loss for some
large probability level 8 (e.g., 8 =99.5% in Solvency II). If
f:R, >R, represents the reinsurance indemnity function
and § € [0, 1] is the recovery rate of the loss given default,
then the insurer is in effect compensated for f(X)A
VaR,[f(X)]+0(f(X) - VaR,[f(X)]),. Obviously, the no-
default scenario is recovered if we set § = 1. It is easy to see
that the greater &, the less likely the default. For more on de-
fault risk, we refer to Refs. [26, 27].

Under the setting of Bowley reinsurance, we assume that
the reinsurer does not have any idea about the distortion risk
measures used by the insurer, while the reinsurer only knows
that the insurer may have finitely many possible distortion
risk measures. For brevity of our result, we consider the case
in which there are only two possible distortion risk measures
of the insurer. To be precise, the reinsurer holds the opinion
that the insurer minimizes either p,, or p,, with probability p
and 1 - p, respectively, where p € [0,1] and {g,,g,} C G, are
the two possible distortion functions adopted by the insurer.

Recall that there exists default risk on the reinsurer. De-
note the reinsurance indemnity function f € . Then the total
retained loss for the insurer is equal to X-—f(X)A
VaR,[ f(X)] - o(f(X) — VaR,[f(X)]), + 11, (f(X)), rather than
X - f(X)+11,(f(X)), where I, is the distortion-deviation
premium principle given by (3). Note, we assume that even if
default risk exists, the premium principle calculated based on
f(X), rather than f(X) A VaR,[f(X)] + 6(f(X) — VaR,[f(X)])..
This is different from Ref. [24]. Because we believe that even
if there is a default risk in the future, the reinsurer charges the
most desirable premium at first. In conclusion, the two-step
game played by the insurer and the reinsurer is formalized as
follows:

Decision problem faced by the insurer. For any given
g, € G provided by the reinsurer, the insurer chooses the op-
timal ceded loss function f € F by solving

min p, (X - f(X) A VaR, [ X))+
S(f(X) = VaR,[fXOD. + 1T, (fX)),  (4)

where g, = g, or g; = g, depending on the type of the insurer.

Decision problem faced by the reinsurer. The reinsurer is
uncertain about the type of the insurer, but knows the distor-
tion functions g, and g, and probability p. Thus for the rein-
surer, the goal is to select the optimal reinsurance premium
generating function g’ by maximizing the expected net profit.
Then, the optimization problem of interest is
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max W8, fosns Sorsn) =
max{p {EIT, (for00 (X)) = foy.00 (O] = C(fy, 0, )} +
(1= pEUL, (f,0.(X)) = forea ] = C(f,, .. D}, (5)

where C(f, ,,) denotes the aggregate administrative cost paid
by the reinsurer if the insurer purchases the policy f, ,,, for
j=1,2.

In the absence of default, i.e., = 1, Boonen and Zhang™”
also considered the above two-step game. When the insurer
chooses the indemnity function that is optimal for him/her,
the reinsurer will know the type of the insurer that is revealed
by indemnity selection. Thus, the problem of this paper is
summarized as follows:

max W(g.: fo.n> forwa)s
St foq, € argrgiTnng (X - f(X) A VaR,[f(X)]-

6(f(X) = VaR, [ f (X)), +11,,(f(X))),

where W(g,; f; 4> foco) 15 the expected net profit of the rein-
surer in Eq. (5) for given indemnity functions f, ., and f, ...
Solutions are called Bowley solutions under default risk.

For problem (4), similar problem has been solved in the
literature!****"-*1. We state it in the following proposition and
provide a self-contained proof.

Proposition 1. For any g, € G, the optimal ceded loss func-
tion f, . that solves problem (4) is given by

J 0,0 =u({z € [0, X1l (Fx(2)) > OH+
L’r &1Ly rx=oH(dz), x>0, (6)

where the function y; is defined as

lp/(Z) 3:6&1(1 - Z) + (1 - 6)gi1(1 - Z)I[(F;'(:kv:zkﬁ(xn_
(1 +6)(1-2)+g,(1-2)),
and &; is any measurable function with 0 <&;(2)y, w10 <
1, for j=1,2.
Proof. Due to translation invariance, we can rewrite (4) as
Poy (X = f(X) A VaR,[f(X)] - 6(f(X) — VaR, [ f(X)]).)+
17, (f(X)).

Being nondecreasing, 1-Lipschitz functions of the ground-up
loss X, the three random variables,

X — f(X) A VaR,[f(X)] = 6(f(X) = VaR,[f(X)])..,
JX) A VaR,[f(X)],
6(f(X) = VaR,[f(X)D)..,

are all comonotonic. By virtue of the comonotonic additivity
and positive homogeneity of p, , we further have

o, [X = F(X) A VaR,[f(X)] = 6(f(X) = VaR,[f(X)]), ] =
P2, [X1 =y, [f(X) A VaR,[F(X)1]-
8p., [(f(X) = VaR,[F O, ].

Apply Lemma 1 to the two absolutely continuous func-
tions (noting that VaR,[ f(X)] is merely a constant):
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x> f(x) A VaR,[f(X)] and x - (f(x) = VaR,[f(X))),,

whose derivatives are almost everywhere equal to

h(x)]l(xvakﬁ(xn and x — h(x)]l(xzvakﬁ(x)) =h(x)(1- I[(X<VaRE(X)))’
respectively. Then,

Py, [ X = f(X) A VaR,[ f(X)]-

O(f(X) = VaR,[f(X)D. + 11, (f(X))] =
P, [X1=pg, [f(X) A VaR,[f(X)]]-
60, [(f(X) = VaR, [ f(X)D. ]+ 11, (f(X)) =

PolX1= [ 28 (D) cvry h(2)dz
5 [ 80(S v@)(1 ~Tcnmy )2+
J; (140812 + .S x(Dh(2)dz =
PulX1=6 [ 8,(S x(2)h()dz—
(1=8) " 2(S (@) Tcrmon A2+
J; @408 + 8.5 (Dh)dz =
pulX1= [ @h2)dz

To minimize the objective function in the form of the above
equation over all fe %, we use the method that minimizes
the integrand. To this end, we can easily see that

0, if (1) <0;
h® =1 &0, ify,(H)=0;
1, if (1) > 0.

Thus, the solution is given by (6), and we complete the proof.

Remark 1. We consider only two parties, namely an in-
surer and a default-prone reinsurer. It is interesting to con-
sider the insurance-reinsurance model in which three agents,
namely a policyholder, an insurer, and a default-prone rein-
surer, coexist’”. This will be our future work to consider the
insurance-reinsurance model under the Bowley question.

Refs. [21, 22] considered Bowley reinsurance without rein-
sure’s default risk. Ref. [21] considered the administrative
cost of offering the compensation is proportional to the ex-
pectation of the ceded loss, i.e., C(f)=:yE(f(X)) for any
feF, where y >0 is a fixed constant representing the cost
coefficient. Ref. [22] considered the administrative cost of of-
fering the compensation to be proportional to a distortion risk
measure. To make our model generality, we follow the as-
sumption of Ref. [22], i.e., let C(f)=:yp, (f(X)) for any
fe¥F,where y >0 is a fixed constant and g, € G,. Then, for
je{l1,2}, we have

EL o0, 01+ 704 (fo,0, (X)) =
17868 1, 0 ()2 =2 T, (£, 0, (),

where gp(t) :=t+7yg:(t),t €[0,1]. Thus, we rewrite the
objective in Eq. (5) as

03054

W(gr;f;:ngu ’f;’nglz) =

PLEEUL, (f,.00 (X)) = for00 O] = C(f, 00 KON}

(1= pREIL, (£, 4 (X)) = fop 50 (D] = C(f;, o (X))} =
PUL, (for 00 (X)) = 1 (fo 0, (XN}

(1= L, (fo .0, (X)) = I, (f, 0, (X))

Under such indifference circumstances, it is common in the
literature to achieve definiteness assuming that h(z) =1,
which means that the insurer is “willing to” act in favor of the
reinsurer!**"*>*1. In this way, we shall set /1,(z) = 1 in the se-

quel. Under this setup, problem (5), by Lemma 1, boils down
to solving

MAX WS, forsar fora) =
8r

ma [[(1+6)r+g,(1) - gu(1)Ix
sreg VO

I i i
([P (14048, 0081 (O+1-00801 O =1y a1y

1-p)I
(1-p) 11400+, (D020 + 100820k =1 1y

[Jptan =
max {p [ 10 +01+8.00- g0 x

vx(dt) +

Lisomsgroesgn+0-9gn Ot -pvagooy )]

(=) [ 101+ 00+, - g0]

ndn), (7)

(1404, (<02 0+ (105201 “,,KWRN,);]

where vy, is the Radon measure on [0,1) such that
ve([a,b)) = (=F;(1=b)) = (=F;'(1-a)) for0<a<b<1.

3 Main result

In this section, we provide our main result for problem (7).
We assume {g,,g,} CG,. It will be helpful to define, for
r€[0,1],

G, () =1+ +g.(1),

G (1) 1= 6ga (1) + (1 = 6)ga (N 1-pevaryixns

Gy(1) :=06g,(0+(1 - 5)gi2(t)]lu«;l(17z)<vl.kﬁ(xn,

and

&) =L, 056,01 (G (D) — (PG () + (1 — p)gr(D)))+
L6y 0<cam (1 = P)Gu(t) + pgr(t) — G (2)).

Moreover, we also define

A={t€[0,1]: ¢(1) <0,G, (1) > gr(D)},
B={re[0,1]: ¢(1) =0,Gx(1) > ()},
C={re[0,1]: ¢(1) > 0,G,(1) > gr(n)}-

These sets allow us to state Theorem 1, which provides the
Bowley solutions under asymmetric information and the rein-
surer’s default risk. Note that Theorem 1 is provided with re-
spect to G, since there exists a one-to-one correspondence
between G, and g,. In Remark 2, we express the solution with
respect to g,.
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Theorem 1. The solution set to problem (7) contains those
G' € G such that

G, if t e A;
G.( =1 €{Gy(0),G,(0)}, ifteB;
GiZ(t)a 1ft € C;

and

VX{[ € [O’ 1] \ (ﬂ UBUC) : Gj(t) < maX{Gil(t)yGQ(t)}} = O
Moreover, for any of these G, we have, for xeR,,
[ on ) =u({t € [0,x]IS (1) € AN+
p(ir € [0,x]IS 5(1) € B,G (S x(1) < Gu(S (D) +
/J({t € [0’ x]|SX(t) € Ca Gil (Sx(t)) > G,z(SX(I))}),

and

() =({1 € [0, XIS 1(1) € A, G (S x(1)) < Gl S s (D)) +
p(it € [0,x11S x(1) € B, G:(S 1) < Gu(S (DD +
p(it € [0,x1IS (1) € C)).

Proof. The proof is similar to that of Theorem 3.1 in Ref.
[22].

We use the technique of path-wise optimization. Eq. (7) is
written as

max j] [(1+0)t+ g.(t) — (D)X
greGg JO

(P! (1-0<VaRg (X)) ) ]

{[Pl[unwwgy(r)@g,. (t)y+(1-6)gi1 (O],

Fy! (17,><VQRB(X>>):|} VX(dt) =

[(1 = P)tsoes, (=682 0+(1-8)g2 0,
1
max fo [G(1) = gx][PLig, i + (1 = PG, e ] vi(dt) =
1
max f [G(1) = geO][PLiga<c 006001 +
Greg JO

(1= P, 0<6,0<6201 + Lig, weminiano.60n ] Vi (dE) =

1 1
max [ (G, (1,0 (d) < | maxp(G,(0), Hvx(ds),
GreG JO 0 G, (>0

where
[G.(©) = 8] [ PliG <6, 05601 F Lig <60 ]
if G,(1) < G, (D),
" (Gr(t)7 t) = [G’(t) - gk(t)] ]I(G,(r)éG,Mr))

if G,(t) =Gy (1);
[G.(1) = g [(1 = P)Lig, <c,0<6001 + Ligecaan ]
if G,vz(t) > Gil(t)'

Now, we solve the maximization problem path wise, and
therefore, we first fix ¢ € [0,1]. Next, we construct solutions
of maxg, 0 ¢(G.(1),1). We consider three different cases.

(i) Suppose that G,(t) < G, (): Then,

0(G,(0),1) = [G,(t) — gD PLi 06, 0<61 01 + Licwecmn]-

For all 7€ [0,1], it holds that ¢(-,7) is strictly increasing on
[0,G,(1)] and on (Gy(1),G(1)], and ¢(-,1) =0 on (G, (2),00).
Thus, the maximum value of ¢(-,1) is either located at the
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possible discontinuities, G,(f) and G,,(¢), or it is zero. Hence,
gl(;c)l;()w(Gr(t), 1) =max{p[G; (1) — gx(O)], [G (1) — gx(1)],0} =
max{p[G,(t) - gz()]+
max{0, G, (1) — [pG, (1) + (1 — p)gz(D)]},0} =
max{p[G; (¢) — gzx(H)] + max{0, #(1)},0}.

If ¢(r)<0 and G, () > gx(t), then maxg 0 @(G.(2),1) is
solved by G.(f) =G, (t). Likewise, if ¢(f) >0 and G,(t) >
gx(?), then maxg, (0 @(G,(7),1) is solved by G.(f) = G,(¥). If
@) =0 and G,(¢) > gx(?), then maxg, s ¢(G.(¢),1) is solved
by either G,(r) = G, (¢) or G,(t) = G,(¢). Finally, if G,(?) <
gx(?), then maxg, 50 ¢(G,(?),1) = 0, and it is thus solved by any
G,.(t) > Gy(1).
(i1) Suppose that G,(¢) = G, (f): Then,

0(G,(),1) = [G.(1) — gr(D]L6, <01

For all +€[0,1], it holds that ¢(-,7) is strictly increasing on
[0,G, ()], and ¢(-,£) =0 on (G, (t),o). Thus, the maximum
value of ¢(-, 1) is either located at, G, (), or it is zero. Hence,

max ¢(G, (1), 1) = max{[G. (1) - 8«(1)]. 0}.

Recall that ¢(¢) = 0. If G,,(7) > gx(t), then maxg, s ¢(G.(),1)
is solved by G.(t)=G,(t) =G,(t). If G,(f) < g(t), then
maxg,s0@(G.(1),1) =0, and it is thus solved by any
G,.(t) > Gy(1).

(iii) Suppose that G,(¢) > G, (f): Then,

o(G,(D),1) = [G(1) — g:(DI[(1 - p)I[(G,l(z)<G,(z)<Gyg(1)) + g, 0<cranl-

For all 7€[0,1], it holds that ¢(-,7) strictly increases on
[0,G. ()] and on (G (1), Go(1)], and ¢(-,1) =0 on (Gu(7), ).
Thus, the maximum value of ¢(-,1) is either located at the
possible discontinuities, G,(¢) and G, (¢), or it is zero. Hence,

max ¢(G,(1),1) =max{(l - p)[Gy(1) - gz (D], [Gin (1) — gx(1)],0} =

G ()20
max{(l - p)[Ga(t) — gx(1)]+
max{0, G, (1) = [(1 = p)Gu(1) + pgr(n]}, 0} =
max{(1 - p)[G.(1) — gx(1)] + max{0, -¢(1)},0}.

If ¢(r)<0 and G, (t) > gz(r), then maxg 0 (G.(2),1) is
solved by G.(f) =G, (¢). Likewise, if ¢(f) >0 and G,(t) >
gr(?), then maxg (0 ¢(G,(7),1) is solved by G.(t) = G,(?). If
@) =0 and G,(¢) > gx(?), then maxg, ) ¢(G,(¢),1) is solved
by either G.()=G,(t) or G,()=Gy(t). Finally, if
G, (1) < gr(7), then maxg 0 9(G,.(¢),1) =0, and it is thus
solved by any G.(t) > G,,(1).

Now we constructed the solutions of maxg, .0 ¢(G.(?),1) for
all € [0,1]. Let G; € G such that it solves maxg, s ¢(G.(t),1)
for all re(0,1]. Note that G:(0)=0 is a solution to
maxg, 0 ©(G,(0),0) = 0. Thus,
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’ max ¢(G, (1), )vx(dr) = I} 0G0 0mdn) < and
max jl SG.(D.1)vo(dD) < S0 ) =u({1 € [0, x]IS < (1) € B, G (S (1)) = Go(S x(D)D+
Greg 10 u({r € [0,x]IS (1) € CD). (€))

max ¢(G,(1), 1)vy(dr).
0 Gy ()20
Thus, the inequalities can be replaced by equalities, and we
conclude the proof of the premium generating functions G: in
Bowley solutions under the reinsurer’s default risk.

For a fixed premium generating function G, the optimal
indemnity functions f; ~and f = follow from Proposition 1.
This concludes the proof.

Remark 2. @O From Theorem 1 and G*(f) = (1 +0)t + g'(¢),
we obtain g'(1) = G:(H)— (1 +0)t, i.e.,

G,()—-(1+06), ifte A;
g =4 €lGO-1+01,G,(-(1+0)t}, ifteB;
G.()—(1+0), ifteC;

and

vi{t € [0, 1]\ (AUBUC):
8, (1) < max{G, (1) = (1 +O)1,G,(1) = (1 + O)t}} = 0.

@ When setting 6 = 1, we recover Theorem 3.1°% under
the same premium principle.

While the function ¢ is merely used as an ancillary func-
tion to construct the Bowley solutions under default risk, it
has an interpretation as follows™. At a given value
1€ [0,1], ¢(¢) is the marginal profit that the reinsurer makes
by choosing G:(f) = g,(t) instead of G:(t) = g, (¢). Therefore,
if @¢(¢) is positive (negative), then it is profitable for the rein-
surer to select the premium generating function G*(¢) that
makes the type 2 (or 1) insurer indifferent between buying or
not buying marginal reinsurance. While, for the marginal
profit, reinsurance prices often make one type of insurer “in-
different”, this does not imply that the insurer will be indiffer-
ent between insuring or not insuring. In fact, since it may hold
that G:(¢) < g,;(t) for some ¢ €[0,1], the insurer can strictly
profit from buying reinsurance.

4 Two examples with ordered distortion
functions of the insurer

In this section, two examples are provided for illustrating
Theorem 1 in Section 3. These two examples have order dis-
tortion functions, i.e., g,(t) > g,(t) for all t€[0,1]. Then
G, (1) 2 G,(r). For ease of implementing the calculation, we
first set gx(t) =t so that gx(t) = (1+y)t and I, (f,,, (X)) =
(1+Y)E[f,,,(X)],j=1,2. Under these circumstances, the
function ¢ simplifies as

o) = Go() = (pG, () + (1 = p)(1 +y)1),

where G, (t) and G,(¢) are defined in Section 3.
From Theorem 1, we obtain that, for any optimal G’ and
x €[0,00),
£ () =u({t € [0, x]IS (1) € AU B+
u({t € [0,x]IS x(1) € C,G (S x() > Gu(S x())), (8)

0305-6

When 6 =1, i.e., there is no reinsurer’s default risk, then
we recover the results obtained by Boonen and Zhang™. Ad-
ditionally, we remark that there exists an error in Section 4 of
Ref. [22] for f;.  (x) and f,
in Egs. (8) and (9).

For the first example below, as we will observe, the value
of probability p plays a key role in determining the optimal
premium generating function and the corresponding ceded
loss functions.

Example 1. Suppose that the risk X has an exponential dis-
tribution with mean 1, the recovery rate ¢ = 0.5 and the rein-
surer sets its regulatory capital at the level of 8 =0.95. Then
VaR,,5(X) = 2.9957. Assume that the distortion functions of
the insurer are given by g,(®)=1r" and g,() =1, for
t€[0,1], where @, =0.2 and @, = 0.4. Clearly, g,(?) > g, (1),
for all ¢ € [0, 1], which implies G, (f) > G,(t). For y = 0.1, the
solutions of the equations G, (¢) = gx(t) and G,(¢) = gz(f) on
te(0,1) are t, =0.8877 and 1, = 0.8531, respectively. Ac-
cording to the definitions of sets A, B, and C, we first need to
determine the signs of the function ¢(¢) for ¢ € [0,,], and then
obtain the explicit expressions of these three sets. Consider
the following three values of the probability p:

(i) Suppose that p = 0.1. In this case, we calculate that

&) =Gp(H) — (pGu () + (1 —p)(1 +y)1) =
0.51°* +0.5(* Tn0.05))—
0.1x (0.5 +0.5(t" T 15005)) — 0.9 x 1. 17 =
0.51"* = 0.051°% + (0.5** = 0.05"*) 15005, — 0.99¢2.

(x). The correct forms are given

From Fig. la, we can easily see that ¢(f) =0 has a unique
solution on (0,7,], which is given by #; = 0.8478. Meanwhile,
¢(t) >0 when t € (0,t;) and ¢(r) <0 when 7 € (t;,¢t,). Hence,
we have A = (t;,1,), B={0,;}, and C = (0,,). Premium gen-
erating functions G, in Bowley solutions with default risk are
then given by

0.50* +0.5(t Io0s),  if £€[0,0.8478];
G:(H=1{ 1, if t€(0.8478,0.8877];
G.(t), if vy{te(0.8877,11: G.(t) <G, (1)} = 0.

Furthermore, the optimal ceded loss functions for x € R, are
given by
fi o ) =u({t € [0, x]le” € (&5, 1,]}) + 0+
u({r€[0,x]le™ € (0,51} =
u({re[0,x]le™ € (0,11} =
u({r € [0,x]t € (0.1191,00)}) =
(x—=0.1191),,

{
{
{
{

where x, := max{x,0}, and
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Fig. 1. Plots of the function ¢(r) on € [0,1] for three different values of p.
Corresponding to Example 1, (a) p=0.1, (b) p=0.4, and (c) p=0.9.

0305-7

fien (0 =0+u({t €[0,x]le™ € (0,5]) =
u({t € [0,x]|t € [0.1651,00)}) =
(x=0.1651),.

This means that the type of our optimal ceded loss function is
a traditional stop-loss policy. Moreover the expected net
profit can be calculated as W(g?) = 1.0306.

(ii) Suppose that p = 0.4. In this case, we have

#(1) =Gp(0) = (pGu (D) + (1= p)(1 +y)p) =
0.5 +0.5(" L5~
0.4% (0.5° +0.5(1*T,.005)) — 0.6 X 117 =
0.5 —0.26"2 + (0.5 — 0.2£%)L,..0, — 0.661.

From Fig. 1b, we can easily see that ¢(¢) = 0 has two solu-
tions on [0,7;], which are given by # =0.0202 and
t, = 0.8136. Meanwhile, ¢(r) > 0 when ¢ € (t;,¢,) and ¢(f) <0
whent € (0,£;,) U (t,,¢,). Hence, wehave A = (0,1;) U (t,,1,), B =
{0,1;,1,}, and C = (t;,1,). Premium generating functions G’ in
Bowley solutions with default risk are then given by

0.51°2 +0.5(1°T,-05)),

if 7€ (0,0.0202)U(0.8136,0.8877);
0.51 +0.5("T,05)),

if ¢€(0.0202,0.8136];
G.(1),  if v{r€(0.8877,11: G,(1) < G, (1)} = 0.

G =

Furthermore, the optimal ceded loss functions for x € R, are
given by
S @) =u({t € [0,x]le™ € [0,5:] U [1,1,]}) + O+
u({z €[0,x]le™ € (5, 1,)}) =
u({t€[0,x]le” € [0,1,]}) =
(x—0.1191),,

and

) =0+ (€ [0,x]le” € (8, 1)) =
min{(x—0.2063),,3.9658}.

Hence, the stop-loss contract is signed between the reinsurer
and the type 1 insurer, while a two layer stop-loss policy is
provided for the type 2 insurer. Moreover the net gain can be
calculated as W(g:) = 1.2401.

(iii) Suppose that p = 0.9. In this case, we have

¢ =G (1) — (pG (@) + (1 —p)(1 +y)t) =
0.5 + 0.5(1** T 005))—
0.9 % (0.5 + 0.5(t"T15005)) — 0.1 x 1. 17 =
0.5 — 0.451°* + (0.5¢* = 0.451°*); 1005 — 0.11¢.
From Fig. 1c, we know that A = (0,7,], B={0}, and C = 0.

Premium generating functions G; in Bowley solutions with
default risk are then given by

G'(t) = 0.56°% +0.5(tIpn005),  if £€(0,0.8877];
PTG, if vt € (0.8877,11: G (1) < G, (1)) = 0.

Furthermore, the optimal ceded loss functions for x € [0, c0)
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are given by
fie ()= (x=0.1191),
and

S =0.

Hence, the stop-loss contract is signed between the reinsurer
and the type 1 insurer. When the probability of the type 1 in-
surer is sufficiently high, for example p = 0.9, the type 2 in-
surer will not cede any function. Furthermore, we do not
know exactly the critical point p to the insurers that cede no
loss. This will be our future study. Moreover the profit ac-
quired by the reinsurer can be computed as W(g") = 2.2794.

The following example illustrates how the default rate ¢ af-
fects the optimal contract form. We will see that ¢ has the
greatest impact on the type 1 insurer, and that the optimal
contract forms depend on the value of ¢.

Example 2. Suppose that the risk X is a nonnegative con-
tinuous random variable possibly with a jump point at 0. The
reinsurer sets its regulatory capital at 8 € (0, 1) and the recov-
ery rate ¢ € (0,1). The distortion functions of the insurer are
given by g,(f)=(dH)A1 and g,(#) =(d,)A1 for t€][0,1],
respectively. We assume that d;, > d,,. Clearly, under this set-
ting, we have g,(t)>g,(t), that is, G,(f) > G,(f) and
{(Gy(1)>G,(}=(0,1/d,). Let y=a—-1 with a>1. If
1-B<1/d;, then G;(t)=6d;tlc_p+d;tl pacijay + ey
and

¢(1) =Go(t) = (pG (1) + (1 = p)(1 +y)t) =
(82(1) = pgi(D)(OLcr—py +L1_parey) — (1 = plat.
We have ¢(1) <0 for g,(t)—pgia(t) <0 and ¢(t) >0 for

go()— pgi () > 0. Thus the following relationship between ¢
and 0 holds:

(1-plat

0 —_—
¢>(<0 = g = pga(t)

511(%142) +I[(Hz<:<1) > (<)

The right hand side can be written as

A=pa e e 0.1/d,1:
_O-par | Gzan
go(D)— pga () 4= pit’ ifre(1/d,,1/d,];
at, ifre(1/d,,1].

To analysis how ¢ influences f~, we consider the follow-
ing cases:

(i) Suppose that d, <d,p, 1-B<p/d,. If a/d, <1, let
ty=p/d,—(1-p)a)<1/dyand t, = 1/a. We have {¢(f) < 0} =
0,1,)U (1, 1), {¢p(t) > 0} = (t,,1,). Then we consider different
values of §. If ¢ is relatively large, that is d,6 > a, then
{Gi (1) = gr(D} = {Gi(?) = gr(D)} = (0,1/a). Hence, A, = (0,1,),
B, =1{t,t}, and C,=(t,t,). If € (a/d,,a/d,), we have
{Gu(1) 2 gx(D} =(0,1/a) but {G,(1) > gD} =(1-4,1/a).
Thus A, =(0,t,), B, ={t,,t,}, and C, =(t,,,)N(1=B,1/a) =

In conclusion, if 6 > a/d,, the premium generating func-
tions G: in Bowley solutions with default risk are then given
by

G, (1), if te[0,4];
Gj(t) =1 Gy(1), if re (t,t];
G.(t), if vlte(t,11:6.() <G, (1)} =0;

and the cede functions are given by

Sien () =p({r € [0, x]IS x() € (0,1/d>)}),
Ji0n (0 =pu({r € [0, X]|S x(1) € (11, 1)}).

If 6 < a/d,, the premium generating functions G are

G, (), if te(1-8,14],
Gt(l) = Gy(1), if te ,5];
G.(), if wlte(0,1-BlU(t,11:G.(1) <G, (1)} =0;

and the cede functions are

S =u({r € [0, x]IS < (1) € (1 =B, 1/d>)}),
S 0o (0 =pu({r € [0, x]|S x(2) € (11, 1)}).

(i) Suppose that d, <d,p, 1 -B< p/d,. If a/d, > 1, then
¢(1) <0 for r€(0,1) and C = 0. By a similar argument in part
(i), we have A=(0,t,) for 6 >a/d, and A=(1-p,t,) for
0<ald,.

In this condition, if 6 > a/d,, the premium generating func-
tions G are

Gil (t)’
G.(1),

if te(0,1];

= { if vylr e (4. 11: G0 < Gu(0) = 0:

and the cede functions are

£ () = (it € [0, XIS s € 0,1)D),  f, () =0.
If 6 < a/d,, the premium generating functions G; are

G- { G

and the cede functions are

if te(1-8,11;
if vi{re(0,1-B1U(1,,11:G () <G, (1)} =0;

Fo @ = p{ € [0,x1S () € (1 =B,1)), [, (x) =0

1-
(iii) Suppose that d, > d,p, | -B< 1/d,,and 1 < Ei S)a.
. —a,p
For a/d, > 1, ¢(t) <0 for ¢ € (0, 1), the result is the same as
condition (ii).
If 6 > a/d,, the premium generating functions G' are

Gil (t)»
G.(1),

if te(0,1];

G.(t) = { if v{te®,11:G,(1) <G, (1)} =0;

and the cede functions are

Joren @) = pu({r € [0,x]1Sx() € (0,1)D),  f,;,,(x) =0.

If 6 < a/d,, the premium generating functions G; are

(1-B,1/a)=(t,,1,). The result is the same as the first condi- G.(), if re(1-B,11;
tion. However if § becomes smaller, i.e., § <a/d,, we have G =1 G.(, suchthat vi{re(0,1-B1U(t,1]:
(Ga(D) > gD} = {Go(D) > g0} = (1-B,1/a).  Thus A, = G.(1) < Gy(1)) = 0;
(1-8,1), B; ={1,,t,}, and C; = (¢,,1,).
0305-8 DOI: 10.52396/JUSTC-2022-0111
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and the cede functions are

o () = plft € [0,11S x(1) € (1 =B, 1)),

For a/d, < 1, there exist ¢, = y (f ) <1l/d,, ,=1/a
—(1-pla
such that {¢(r) < 0} = (0,1,) U (t,, 1)2 and {¢(¢) > 0} = (¢,,1,).
If § > a/d,, the result is the same as condition (i). In this
case, the premium generating functions G: in Bowley solu-
tions with default risk are then given by

f“ (x)=0.

G,(», iftel0,4];
G (=4 G0, if te(t,b];
Gr(t)’ if vy{re(n,1]: Gr(t) <G} =0

and the cede functions are

i () =({1 € [0, X1IS (1) € (0, 1/d)}),
a0 =1 € [0,211S x() € (11, 1))).

If 6 < a/d,, the premium generating functions G: are

G, (D), if re(l _ﬁ’ll];
G:(t) = G,(0), if re (t,5];
G.(), if velre(0,1-BlU (1, 11:G.(H) < G, (1)} =0;

and the cede functions are

Jipea ) =u({r € [0, x]IS x (1) € (B,1/d>)}),
S 0o () =pu({r € [0, X]IS x(1) € (11, 1)}).

1-
(iv) Suppose that d> > d,p, 1-B<1/d,, and 1 > %,
2=\ p
which implies d, > a. ]
(1-pla B
If 6> , then 6d,>a, {¢(t)>0}=(0,1/a), and

2 —ap
{p(t) <0} = (1/511, 1). Thus A=0, C =(0,1/a), and the premi-
um generating functions G are

Ga(1),
G.(1),

if 1€(0,1/al;

G, = { such that v {re(1/a,1]: G (1) <G, (1)} =0.

The ceded loss functions are

i () =it € [0, XIS (1) € (0, 1/d)}),
a0 = € 10,2118 (1) € (0, 1/@))).

1—
If 6 < El DA hen (1) > 0} = (1-B.1/a), ($(2) <0) =
0,1 —ﬁ)uz(l/al, 1), and C=({1-8,1/a). Moreover if
6 >ald,, then A=(0,1-p), the premium generating func-
tions G and the ceded loss functions are

G.(n), if re(0,1-81;
G(t)=3 Gy, if te(1-4,1/al;
G.(), suchthat v {re(1/a,1]: G ()<G,()}=0;

i () =p({t € [0,X11S (1) € (0, 1/)}),
a0 =1 € [0,X11S x(1) € (1 =B, 1/@))).

If 6 <a/d,, then A =0, the premium generating functions
G and the ceded loss functions are

0305-9

G,(1),
G.(),

if te(1-3,1/al;
such that v,{re (0,1-B]U(1/a,1]:
G.()<G,(1}=0;

G, (1) =

i () =u({1 € [0,X11S x(1) € (1 =B, 1/dy)D),
i () =it € [0, X1 «(1) € (1B, 1/a)}).

From the above, in the first three cases, we find that the op-
timal reinsurance contract for the type 1 insurer is from a stop-
loss contract to a stop-loss with an upper limit contract, and
the optimal reinsurance remains unchanged even if ¢ be-
comes smaller for the type 2 insurer. For the fourth case, the
optimal contract for the type 1 is the same as the first case,
and the optimal contract for the type 2 will be from stop-loss
contract to stop-loss with upper limit contract. Thus, we know
that the insurer is not willing to cede more risk to the rein-
surer when § is smaller, i.e., the higher default risk.

5 Conclusions

Under the framework of distortion risk measures, we revisit
the Bowley reinsurance problem with the reinsurer’s default
risk when the type of insurer is unknown to the reinsurer. By
assuming that the reinsurer adopts a general premium
principle®™ and distortion risk measure, the Bowley solutions
under the reinsurer’s default risk are derived in full generality
with the help of marginal profit functions. Our results gener-
alize Ref. [22, Theorem 3.1] to the case where the reinsurer
defaults his risk. The optimal ceded loss functions depend on
the underlying risk distribution, the distortion functions used
by the insurer, the cost function, recovery rate, default risk
level, and the probabilities that the reinsurer assigns to the in-
surer of being a certain type. By implementing some numeric-
al examples, we find that the shut-down policy, the pooling
stop-loss policies, the layer or limited stop-loss contracts are
possible candidates of the optimal indemnity functions for the
insurer.

As a future study, we are interested in extending the cur-
rent study to the case where there is a multiplier type of back-
ground risk™!. In addition, since different types of insurers
may have different distributions of losses, we wish to design
optimal Bowley reinsurance contracts with such asymmetric
information as well.
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