[1] |
Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation [J]. Nature, 1995, 375(6 531): 482-484.
|
[2] |
Saunders J C. The role of central nervous system plasticity in tinnitus [J]. J Commun Disord, 2007, 40(4): 313-334.
|
[3] |
Eggermont J J, Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood [J]. Hear Res, 2000, 142(1-2): 89-101.
|
[4] |
Seki S, Eggermont J J. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss [J]. Hear Res, 2003, 180(1-2): 28-38.
|
[5] |
Eggermont J J. Tinnitus: neurobiological substrates [J]. Drug Discov Today, 2005, 10(19): 1 283-1 290.
|
[6] |
Eggermont J J, Roberts L E. The neuroscience of tinnitus [J]. Trends Neurosci, 2004, 27(11): 676-682.
|
[7] |
Cazals Y, Horner K C, Huang Z W. Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus [J]. J Neurophysiol, 1998, 80(4): 2 113-2 120.
|
[8] |
Eggermont J J, Kenmochi M. Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex [J]. Hear Res, 1998, 117(1-2): 149-160.
|
[9] |
Guitton M J, Caston J, Ruel J, et al. Salicylate induces tinnitus through activation of cochlear NMDA receptors [J]. J Neurosci, 2003, 23(9): 3 944-3 952.
|
[10] |
Jastreboff P J, Brennan J F, Coleman J K, et al. Phantom auditory sensation in rats: an animal model for tinnitus [J]. Behav Neurosci, 1988,102(6): 811-822.
|
[11] |
Lobarinas E, Yang G, Sun W, et al. Salicylate- and quinine-induced tinnitus and effects of memantine [J]. Acta Otolaryngol Suppl, 2006,(556): 13-19.
|
[12] |
Yang G, Lobarinas E, Zhang L, et al. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats [J]. Hear Res, 2007, 226(1-2): 244-253.
|
[13] |
Elattar T M, Lin H S, Tira D E. The effect of non-steroidal anti-inflammatory drugs on the metabolism of 14C-arachidonic acid by human gingival tissue in vitro [J]. J Dent Res, 1983, 62(9): 975-979.
|
[14] |
Siegel M I. Effect of non-steroidal anti-inflammatory drugs on arachidonic acid metabolism [J]. Headache, 1981, 21(6): 264-271.
|
[15] |
Siesjo B K, Agardh C D, Bengtsson F, et al. Arachidonic acid metabolism in seizures [J]. Ann N Y Acad Sci, 1989, 559: 323-339.
|
[16] |
Didier A, Miller J M, Nuttall A L. The vascular component of sodium salicylate ototoxicity in the guinea pig [J]. Hear Res, 1993, 69(1-2): 199-206.
|
[17] |
Barbour B, Szatkowski M, Ingledew N, et al. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells [J]. Nature, 1989, 342(6 252): 918-920.
|
[18] |
Pearlman R J, Aubrey K R, Vandenberg R J. Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a [J]. J Neurochem, 2003, 84(3): 592-601.
|
[19] |
Saxena N C. Inhibition of GABA(A) receptor (GABAR) currents by arachidonic acid in HEK 293 cells stably transfected with alpha1beta2gamma2 GABAR subunits [J]. Pflugers Arch, 2000, 440(3): 380-392.
|
[20] |
Mahlke C, Wallhausser-Franke E. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry [J]. Hear Res, 2004, 195(1-2): 17-34.
|
[21] |
Wallhausser-Franke E, Cuautle-Heck B, Wenz G, et al. Scopolamine attenuates tinnitus-related plasticity in the auditory cortex [J]. Neuroreport, 2006, 17(14): 1 487-1 491.
|
[22] |
Zheng Y, Seung Lee H, Smith P F, et al. Neuronal nitric oxide synthase expression in the cochlear nucleus in a salicylate model of tinnitus [J]. Brain Res, 2006, 1 123(1): 201-206.
|
[23] |
Akaneya Y, Tsumoto T. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex [J]. J Neurosci, 2006, 26(40): 10 209-10 221.
|
[24] |
Douek E E, Dodson H C, Bannister L H. The effects of sodium salicylate on the cochlea of guinea pigs [J]. J Laryngol Otol, 1983, 97(9): 793-799.
|
[25] |
Puel J L, Bobbin R P, Fallon M. Salicylate, mefenamate, meclofenamate, and quinine on cochlear potentials [J]. Otolaryngol Head Neck Surg, 1990, 102(1): 66-73.
|
[26] |
Ramsden R T, Latif A, OMalley S. Electrocochleographic changes in acute salicylate overdosage [J]. J Laryngol Otol, 1985, 99(12): 1 269-1 273.
|
[27] |
Silverstein H, Bernstein J M, Davies D G. Salicylate ototoxicity. A biochemical and electrophysiological study [J]. Ann Otol Rhinol Laryngol, 1967, 76(1): 118-128.
|
[28] |
Tanaka Y, Brown P G. Action of metabolic inhibitors and energy-rich phosphate compounds on cochlear potentials [J]. Ann Otol Rhinol Laryngol, 1970, 79(2): 338-351.
|
[29] |
Arruda J, Jung T T, McGann D G. Effect of leukotriene inhibitor on otoacoustic emissions in salicylate ototoxicity [J]. Am J Otol, 1996, 17(5): 787-792.
|
[30] |
Ueda H, Yamamoto Y, Yanagita N. Effect of aspirin on transiently evoked otoacoustic emissions in guinea pigs [J]. ORL J Otorhinolaryngol Relat Spec, 1996, 58(2): 61-67.
|
[31] |
Kurata K, Yamamoto M, Tsukuda R, et al. A characteristic of aspirin-induced hearing loss in auditory brainstem response of conscious rats [J]. J Vet Med Sci, 1997, 59(1): 9-15.
|
[32] |
Ochi K, Eggermont J J. Effects of salicylate on neural activity in cat primary auditory cortex [J]. Hear Res, 1996, 95(1-2): 63-76.
|
[33] |
Muller M, Klinke R, Arnold W, et al. Auditory nerve fibre responses to salicylate revisited [J]. Hear Res, 2003, 183(1-2): 37-43.
|
[34] |
Stypulkowski P H. Mechanisms of salicylate ototoxicity [J]. Hear Res, 1990, 46(1-2): 113-145.
|
[35] |
Kakehata S, Santos-Sacchi J. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge [J]. J Neurosci, 1996, 16(16): 4 881-4 889.
|
[36] |
Tunstall M J, Gale J E, Ashmore J F. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea [J]. J Physiol, 1995, 485(Pt 3): 739-752.
|
[37] |
Oliver D, He D Z, Klocker N, et al. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein [J]. Science, 2001, 292(5 525): 2 340-2 343.
|
[38] |
Peng B G, Chen S, Lin X. Aspirin selectively augmented N-methyl-D-aspartate types of glutamate responses in cultured spiral ganglion neurons of mice [J]. Neurosci Lett, 2003, 343(1): 21-24.
|
[39] |
Wallhausser-Franke E, Braun S, Langner G. Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus? [J]. Neuroreport, 1996, 7(10): 1 585-1 588.
|
[40] |
Wallhausser-Franke E. Salicylate evokes c-fos expression in the brain stem: implications for tinnitus [J]. Neuroreport, 1997, 8(3): 725-728.
|
[41] |
Jastreboff P J, Hansen R, Sasaki P G, et al. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph [J]. Arch Otolaryngol Head Neck Surg, 1986, 112(10): 1 050-1 053.
|
[42] |
Chen G D, Jastreboff P J. Salicylate-induced abnormal activity in the inferior colliculus of rats [J]. Hear Res, 1995, 82(2): 158-178.
|
[43] |
Manabe Y, Yoshida S, Saito H, et al. Effects of lidocaine on salicylate-induced discharge of neurons in the inferior colliculus of the guinea pig [J]. Hear Res, 1997, 103(1-2): 192-198.
|
[44] |
Basta D, Ernst A. Effects of salicylate on spontaneous activity in inferior colliculus brain slices [J]. Neurosci Res, 2004, 50(2): 237-243.
|
[45] |
Liu Y, Li X. Effects of salicylate on voltage-gated sodium channels in rat inferior colliculus neurons [J]. Hear Res, 2004, 193(1-2): 68-74.
|
[46] |
Liu Y, Li X, Ma C, et al. Salicylate blocks L-type calcium channels in rat inferior colliculus neurons [J]. Hear Res, 2005, 205(1-2): 271-276.
|
[47] |
Liu Y, Li X. Effects of salicylate on transient outward and delayed rectifier potassium channels in rat inferior colliculus neurons [J]. Neurosci Lett, 2004, 369(2): 115-120.
|
[48] |
Liu Y X, Li X P, Liu J X, et al. Inhibition of salicylate on potassium channels in rat inferior colliculus neurons[J]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2005, 40(11): 835-839.
|
[49] |
Rudy B, McBain C J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing [J]. Trends Neurosci, 2001, 24(9): 517-526.
|
[50] |
Joho R H, Ho C S, Marks G A. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons [J]. J Neurophysiol, 1999, 82(4): 1 855-1 864.
|
[51] |
Tateno T, Robinson H P. Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current [J]. Biosystems, 2007, 89(1-3): 110-116.
|
[52] |
von Hehn C A, Bhattacharjee A, Kaczmarek L K. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice [J]. J Neurosci, 2004, 24(8): 1 936-1 940.
|
[53] |
Song P, Yang Y, Barnes-Davies M, et al. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons [J]. Nat Neurosci, 2005, 8(10): 1 335-1 342.
|
[54] |
Wang H T, Luo B, Huang Y N, et al. Sodium salicylate suppresses serotonin-induced enhancement of GABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro [J]. Hear Res, 2008, 236(1-2): 42-51.
|
[55] |
Eggermont J J. Central tinnitus [J]. Auris Nasus Larynx, 2003, 30 Suppl: S7-12.
|
[56] |
Xu H, Gong N, Chen L, et al. Sodium salicylate reduces gamma aminobutyric acid-induced current in rat spinal dorsal horn neurons [J]. Neuroreport, 2005, 16(8): 813-816.
|
[57] |
Smiley J F, Goldman-Rakic P S. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy [J]. J Comp Neurol, 1996, 367(3): 431-443.
|
[58] |
Zhou F M, Hablitz J J. Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex [J]. J Neurophysiol, 1999, 82(6): 2 989-2 999.
|
[59] |
Bennett B D, Huguenard J R, Prince D A. Adrenergic modulation of GABAA receptor-mediated inhibition in rat sensorimotor cortex [J]. J Neurophysiol, 1998, 79(2): 937-946.
|
[60] |
Gorelova N, Seamans J K, Yang C R. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex [J]. J Neurophysiol, 2002, 88(6): 3 150-3 166.
|
[61] |
Christophe E, Roebuck A, Staiger J F, et al. Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons [J]. J Neurophysiol, 2002, 88(3): 1 318-1 327.
|
[62] |
Peruzzi D, Dut A. GABA, serotonin and serotonin receptors in the rat inferior colliculus [J]. Brain Res, 2004, 998(2): 247-250.
|
[63] |
Liu J, Li X, Wang L, et al. Effects of salicylate on serotoninergic activities in rat inferior colliculus and auditory cortex [J]. Hear Res, 2003, 175(1-2): 45-53.
|
[1] |
Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation [J]. Nature, 1995, 375(6 531): 482-484.
|
[2] |
Saunders J C. The role of central nervous system plasticity in tinnitus [J]. J Commun Disord, 2007, 40(4): 313-334.
|
[3] |
Eggermont J J, Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood [J]. Hear Res, 2000, 142(1-2): 89-101.
|
[4] |
Seki S, Eggermont J J. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss [J]. Hear Res, 2003, 180(1-2): 28-38.
|
[5] |
Eggermont J J. Tinnitus: neurobiological substrates [J]. Drug Discov Today, 2005, 10(19): 1 283-1 290.
|
[6] |
Eggermont J J, Roberts L E. The neuroscience of tinnitus [J]. Trends Neurosci, 2004, 27(11): 676-682.
|
[7] |
Cazals Y, Horner K C, Huang Z W. Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus [J]. J Neurophysiol, 1998, 80(4): 2 113-2 120.
|
[8] |
Eggermont J J, Kenmochi M. Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex [J]. Hear Res, 1998, 117(1-2): 149-160.
|
[9] |
Guitton M J, Caston J, Ruel J, et al. Salicylate induces tinnitus through activation of cochlear NMDA receptors [J]. J Neurosci, 2003, 23(9): 3 944-3 952.
|
[10] |
Jastreboff P J, Brennan J F, Coleman J K, et al. Phantom auditory sensation in rats: an animal model for tinnitus [J]. Behav Neurosci, 1988,102(6): 811-822.
|
[11] |
Lobarinas E, Yang G, Sun W, et al. Salicylate- and quinine-induced tinnitus and effects of memantine [J]. Acta Otolaryngol Suppl, 2006,(556): 13-19.
|
[12] |
Yang G, Lobarinas E, Zhang L, et al. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats [J]. Hear Res, 2007, 226(1-2): 244-253.
|
[13] |
Elattar T M, Lin H S, Tira D E. The effect of non-steroidal anti-inflammatory drugs on the metabolism of 14C-arachidonic acid by human gingival tissue in vitro [J]. J Dent Res, 1983, 62(9): 975-979.
|
[14] |
Siegel M I. Effect of non-steroidal anti-inflammatory drugs on arachidonic acid metabolism [J]. Headache, 1981, 21(6): 264-271.
|
[15] |
Siesjo B K, Agardh C D, Bengtsson F, et al. Arachidonic acid metabolism in seizures [J]. Ann N Y Acad Sci, 1989, 559: 323-339.
|
[16] |
Didier A, Miller J M, Nuttall A L. The vascular component of sodium salicylate ototoxicity in the guinea pig [J]. Hear Res, 1993, 69(1-2): 199-206.
|
[17] |
Barbour B, Szatkowski M, Ingledew N, et al. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells [J]. Nature, 1989, 342(6 252): 918-920.
|
[18] |
Pearlman R J, Aubrey K R, Vandenberg R J. Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a [J]. J Neurochem, 2003, 84(3): 592-601.
|
[19] |
Saxena N C. Inhibition of GABA(A) receptor (GABAR) currents by arachidonic acid in HEK 293 cells stably transfected with alpha1beta2gamma2 GABAR subunits [J]. Pflugers Arch, 2000, 440(3): 380-392.
|
[20] |
Mahlke C, Wallhausser-Franke E. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry [J]. Hear Res, 2004, 195(1-2): 17-34.
|
[21] |
Wallhausser-Franke E, Cuautle-Heck B, Wenz G, et al. Scopolamine attenuates tinnitus-related plasticity in the auditory cortex [J]. Neuroreport, 2006, 17(14): 1 487-1 491.
|
[22] |
Zheng Y, Seung Lee H, Smith P F, et al. Neuronal nitric oxide synthase expression in the cochlear nucleus in a salicylate model of tinnitus [J]. Brain Res, 2006, 1 123(1): 201-206.
|
[23] |
Akaneya Y, Tsumoto T. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex [J]. J Neurosci, 2006, 26(40): 10 209-10 221.
|
[24] |
Douek E E, Dodson H C, Bannister L H. The effects of sodium salicylate on the cochlea of guinea pigs [J]. J Laryngol Otol, 1983, 97(9): 793-799.
|
[25] |
Puel J L, Bobbin R P, Fallon M. Salicylate, mefenamate, meclofenamate, and quinine on cochlear potentials [J]. Otolaryngol Head Neck Surg, 1990, 102(1): 66-73.
|
[26] |
Ramsden R T, Latif A, OMalley S. Electrocochleographic changes in acute salicylate overdosage [J]. J Laryngol Otol, 1985, 99(12): 1 269-1 273.
|
[27] |
Silverstein H, Bernstein J M, Davies D G. Salicylate ototoxicity. A biochemical and electrophysiological study [J]. Ann Otol Rhinol Laryngol, 1967, 76(1): 118-128.
|
[28] |
Tanaka Y, Brown P G. Action of metabolic inhibitors and energy-rich phosphate compounds on cochlear potentials [J]. Ann Otol Rhinol Laryngol, 1970, 79(2): 338-351.
|
[29] |
Arruda J, Jung T T, McGann D G. Effect of leukotriene inhibitor on otoacoustic emissions in salicylate ototoxicity [J]. Am J Otol, 1996, 17(5): 787-792.
|
[30] |
Ueda H, Yamamoto Y, Yanagita N. Effect of aspirin on transiently evoked otoacoustic emissions in guinea pigs [J]. ORL J Otorhinolaryngol Relat Spec, 1996, 58(2): 61-67.
|
[31] |
Kurata K, Yamamoto M, Tsukuda R, et al. A characteristic of aspirin-induced hearing loss in auditory brainstem response of conscious rats [J]. J Vet Med Sci, 1997, 59(1): 9-15.
|
[32] |
Ochi K, Eggermont J J. Effects of salicylate on neural activity in cat primary auditory cortex [J]. Hear Res, 1996, 95(1-2): 63-76.
|
[33] |
Muller M, Klinke R, Arnold W, et al. Auditory nerve fibre responses to salicylate revisited [J]. Hear Res, 2003, 183(1-2): 37-43.
|
[34] |
Stypulkowski P H. Mechanisms of salicylate ototoxicity [J]. Hear Res, 1990, 46(1-2): 113-145.
|
[35] |
Kakehata S, Santos-Sacchi J. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge [J]. J Neurosci, 1996, 16(16): 4 881-4 889.
|
[36] |
Tunstall M J, Gale J E, Ashmore J F. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea [J]. J Physiol, 1995, 485(Pt 3): 739-752.
|
[37] |
Oliver D, He D Z, Klocker N, et al. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein [J]. Science, 2001, 292(5 525): 2 340-2 343.
|
[38] |
Peng B G, Chen S, Lin X. Aspirin selectively augmented N-methyl-D-aspartate types of glutamate responses in cultured spiral ganglion neurons of mice [J]. Neurosci Lett, 2003, 343(1): 21-24.
|
[39] |
Wallhausser-Franke E, Braun S, Langner G. Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus? [J]. Neuroreport, 1996, 7(10): 1 585-1 588.
|
[40] |
Wallhausser-Franke E. Salicylate evokes c-fos expression in the brain stem: implications for tinnitus [J]. Neuroreport, 1997, 8(3): 725-728.
|
[41] |
Jastreboff P J, Hansen R, Sasaki P G, et al. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph [J]. Arch Otolaryngol Head Neck Surg, 1986, 112(10): 1 050-1 053.
|
[42] |
Chen G D, Jastreboff P J. Salicylate-induced abnormal activity in the inferior colliculus of rats [J]. Hear Res, 1995, 82(2): 158-178.
|
[43] |
Manabe Y, Yoshida S, Saito H, et al. Effects of lidocaine on salicylate-induced discharge of neurons in the inferior colliculus of the guinea pig [J]. Hear Res, 1997, 103(1-2): 192-198.
|
[44] |
Basta D, Ernst A. Effects of salicylate on spontaneous activity in inferior colliculus brain slices [J]. Neurosci Res, 2004, 50(2): 237-243.
|
[45] |
Liu Y, Li X. Effects of salicylate on voltage-gated sodium channels in rat inferior colliculus neurons [J]. Hear Res, 2004, 193(1-2): 68-74.
|
[46] |
Liu Y, Li X, Ma C, et al. Salicylate blocks L-type calcium channels in rat inferior colliculus neurons [J]. Hear Res, 2005, 205(1-2): 271-276.
|
[47] |
Liu Y, Li X. Effects of salicylate on transient outward and delayed rectifier potassium channels in rat inferior colliculus neurons [J]. Neurosci Lett, 2004, 369(2): 115-120.
|
[48] |
Liu Y X, Li X P, Liu J X, et al. Inhibition of salicylate on potassium channels in rat inferior colliculus neurons[J]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2005, 40(11): 835-839.
|
[49] |
Rudy B, McBain C J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing [J]. Trends Neurosci, 2001, 24(9): 517-526.
|
[50] |
Joho R H, Ho C S, Marks G A. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons [J]. J Neurophysiol, 1999, 82(4): 1 855-1 864.
|
[51] |
Tateno T, Robinson H P. Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current [J]. Biosystems, 2007, 89(1-3): 110-116.
|
[52] |
von Hehn C A, Bhattacharjee A, Kaczmarek L K. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice [J]. J Neurosci, 2004, 24(8): 1 936-1 940.
|
[53] |
Song P, Yang Y, Barnes-Davies M, et al. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons [J]. Nat Neurosci, 2005, 8(10): 1 335-1 342.
|
[54] |
Wang H T, Luo B, Huang Y N, et al. Sodium salicylate suppresses serotonin-induced enhancement of GABAergic spontaneous inhibitory postsynaptic currents in rat inferior colliculus in vitro [J]. Hear Res, 2008, 236(1-2): 42-51.
|
[55] |
Eggermont J J. Central tinnitus [J]. Auris Nasus Larynx, 2003, 30 Suppl: S7-12.
|
[56] |
Xu H, Gong N, Chen L, et al. Sodium salicylate reduces gamma aminobutyric acid-induced current in rat spinal dorsal horn neurons [J]. Neuroreport, 2005, 16(8): 813-816.
|
[57] |
Smiley J F, Goldman-Rakic P S. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy [J]. J Comp Neurol, 1996, 367(3): 431-443.
|
[58] |
Zhou F M, Hablitz J J. Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex [J]. J Neurophysiol, 1999, 82(6): 2 989-2 999.
|
[59] |
Bennett B D, Huguenard J R, Prince D A. Adrenergic modulation of GABAA receptor-mediated inhibition in rat sensorimotor cortex [J]. J Neurophysiol, 1998, 79(2): 937-946.
|
[60] |
Gorelova N, Seamans J K, Yang C R. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex [J]. J Neurophysiol, 2002, 88(6): 3 150-3 166.
|
[61] |
Christophe E, Roebuck A, Staiger J F, et al. Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons [J]. J Neurophysiol, 2002, 88(3): 1 318-1 327.
|
[62] |
Peruzzi D, Dut A. GABA, serotonin and serotonin receptors in the rat inferior colliculus [J]. Brain Res, 2004, 998(2): 247-250.
|
[63] |
Liu J, Li X, Wang L, et al. Effects of salicylate on serotoninergic activities in rat inferior colliculus and auditory cortex [J]. Hear Res, 2003, 175(1-2): 45-53.
|