ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Original Paper

Structural biology of some snake venom protein families

Cite this:
More Information
  • Corresponding author: NIU Li-wen, E-mail: lwniu@ustc.edu.cn
  • Received Date: 05 July 2008
  • Rev Recd Date: 10 August 2008
  • Publish Date: 31 August 2008
  • Following the clues from our groups characteristic investigations of five snake venom protein families, a short review was provided on some research conclusions, current opinions and latest advances from structural biology of snake venom protein families of serine proteases, metalloproteinase, CRISP, phospholipase A2 and neurotoxin as well. This review emphasized the importance of structural biology of snake venom glycoproteins, crystal structures at an ultrahigh resolution and the complex structure related to snake venom proteins in the field of snake venom proteins.
    Following the clues from our groups characteristic investigations of five snake venom protein families, a short review was provided on some research conclusions, current opinions and latest advances from structural biology of snake venom protein families of serine proteases, metalloproteinase, CRISP, phospholipase A2 and neurotoxin as well. This review emphasized the importance of structural biology of snake venom glycoproteins, crystal structures at an ultrahigh resolution and the complex structure related to snake venom proteins in the field of snake venom proteins.
  • loading
  • [1]
    Fox J W, Serrano S M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures[J]. Proteomics, 2008,8(4): 909-920.
    [2]
    Pahari S, Mackessy S P, Kini R M. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)[J]. BMC Mol Biol, 2007,8: 115.
    [3]
    Moura-da-Silva A M, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells[J]. Curr Pharm Des, 2007,13(28): 2 893-2 905.
    [4]
    Bjarnason J B, Fox J W. Hemorrhagic metalloproteinases from snake venoms[J]. Pharmacol Ther, 1994,62(3): 325-372.
    [5]
    Fox J W, Serrano S M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases[J]. Toxicon, 2005,45(8): 969-985.
    [6]
    Gomis-Ruth F X, Kress L F, Kellermann J, et al. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin[J]. J Mol Biol, 1994,239(4): 513-544.
    [7]
    Zhang D, Botos I, Gomis-Rueth F X, et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)[J]. Proc Natl Acad Sci U S A, 1994,91(18): 8 447-8 451.
    [8]
    Kumasaka T, Yamamoto M, Moriyama H, et al. Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis[J]. J Biochem, 1996,119(1): 49-57.
    [9]
    Zhu X, Teng M, Niu L. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases[J]. Acta Crystallogr D Biol Crystallogr, 1999,55(Pt 11): 1 834-1 841.
    [10]
    Huang K F, Chiou S H, Ko T P, et al. The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 7): 1 118-1 128.
    [11]
    Watanabe L, Shannon J D, Valente R H, et al. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities[J]. Protein Sci, 2003,12(10): 2 273-2 281.
    [12]
    Lou Z, Hou J, Liang X, et al. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus[J]. J Struct Biol, 2005,152(3): 195-203.
    [13]
    Bode W, Gomis-Ruth F X, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’[J]. FEBS Lett, 1993,331(1-2): 134-140.
    [14]
    Gong W, Zhu X, Liu S, et al. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus[J]. J Mol Biol, 1998,283(3): 657-668.
    [15]
    Takeda S, Igarashi T, Mori H, et al. Crystal structures of VAP1 reveal ADAMs MDC domain architecture and its unique C-shaped scaffold[J]. EMBO J, 2006,25(11): 2 388-2 396.
    [16]
    Igarashi T, Araki S, Mori H, et al. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins[J]. FEBS Lett, 2007,581(13): 2 416-2 422.
    [17]
    Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases[J]. FEBS Lett, 2007,581(30): 5 859-5 864.
    [18]
    Zang J, Zhu Z, Yu Y, et al. Purification, partial characterization and crystallization of acucetin, a protein containing both disintegrin-like and cysteine-rich domains released by auto-proteolysis of a P-III-type metalloproteinase AaH-IV from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 12): 2 310-2 312.
    [19]
    Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis[J]. Biochimie, 2000,82(9-10): 851-859.
    [20]
    Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis[J]. Biochim Biophys Acta, 2000,1477(1-2): 146-156.
    [21]
    Parry M A, Jacob U, Huber R, et al. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases[J]. Structure, 1998,6(9): 1 195-1 206.
    [22]
    Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committees Registry of Exogenous Hemostatic Factors[J]. Thromb Haemost, 1998,79(3): 675-683.
    [23]
    Zhang Y, Wisner A, Xiong Y, et al. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning[J]. J Biol Chem, 1995,270(17): 10 246-10 255.
    [24]
    Braud S, Le Bonniec B F, Bon C, et al. The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins[J]. Biochemistry, 2002,41(26): 8 478-8 484.
    [25]
    Braud S, Parry M A, Maroun R, et al. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases[J]. J Biol Chem, 2000,275(3): 1 823-1 828.
    [26]
    Zhang Y, Wisner A, Maroun R C, et al. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling[J]. J Biol Chem, 1997,272(33): 20 531-20 537.
    [27]
    Zhu Z, Gong P, Teng M, et al. Purification, N-terminal sequencing, partial characterization, crystallization and preliminary crystallographic analysis of two glycosylated serine proteinases from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 3): 547-550.
    [28]
    Zhu Z, Liang Z, Zhang T, et al. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases[J]. J Biol Chem, 2005,280(11): 10 524-10 529.
    [29]
    Murakami M T, Arni R K. Thrombomodulin-independent activation of protein C and specificity of hemostatically active snake venom serine proteinases: Crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator[J]. J Biol Chem, 2005,280(47): 39 309-39 315.
    [30]
    Kisiel W, Kondo S, Smith K J, et al. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom[J]. J Biol Chem, 1987,262(26): 12 607-12 613.
    [31]
    Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes[J]. Trends Biochem Sci, 1997,22(1): 1-2.
    [32]
    Schaloske R H, Dennis E A. The phospholipase A2 superfamily and its group numbering system[J]. Biochim Biophys Acta, 2006,1761(11): 1 246-1 259.
    [33]
    Murakami M T, Kuch U, Betzel C, et al. Crystal structure of a novel myotoxic Arg49 phospholipase A2 homolog (zhaoermiatoxin) from Zhaoermia mangshanensis snake venom: insights into Arg49 coordination and the role of Lys122 in the polarization of the C-terminus[J]. Toxicon, 2008,51(5): 723-735.
    [34]
    Kini R M, Evans H J. A model to explain the pharmacological effects of snake venom phospholipases A2[J]. Toxicon, 1989,27(6): 613-635.
    [35]
    da Silva Giotto M T, Garratt R C, Oliva G, et al. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin I, a dimeric Lys49-phospholipase A2 homologue[J]. Proteins, 1998,30(4): 442-454.
    [36]
    Lomonte B, Angulo Y, Calderon L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action[J]. Toxicon, 2003,42(8): 885-901.
    [37]
    Brunie S, Bolin J, Gewirth D, et al. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center[J]. J Biol Chem, 1985,260(17): 9 742-9 749.
    [38]
    Wang X Q, Yang J, Gui L, et al. Crystal structure of an acidic phospholipase A2 from the venom of Agkistrodon halys pallas at 2.0 A resolution[J]. J Mol Biol, 1996,255(5): 669-676.
    [39]
    Scott D L, White S P, Otwinowski Z, et al. Interfacial catalysis: the mechanism of phospholipase A2[J]. Science, 1990,250(4 987): 1 541-1 546.
    [40]
    Rigden D J, Hwa L W, Marangoni S, et al. The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: Possible relationship to cooperative substrate binding[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 2): 255-262.
    [41]
    Xu S, Gu L, Jiang T, et al. Structures of cadmium-binding acidic phospholipase A2 from the venom of Agkistrodon halys Pallas at 1.9A resolution[J]. Biochem Biophys Res Commun, 2003,300(2): 271-277.
    [42]
    Lok S M, Gao R, Rouault M, et al. Structure and function comparison of Micropechis ikaheka snake venom phospholipase A2 isoenzymes[J]. FEBS J, 2005,272(5): 1 211-1 220.
    [43]
    Ambrosio A L, Nonato M C, de Araujo H S S, et al. A molecular mechanism for Lys49-phospholipase A2 activity based on ligand-induced conformational change[J]. J Biol Chem, 2005,280(8): 7 326-7 335.
    [44]
    Lee W H, da Silva Giotto M T, Marangoni S, et al. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid[J]. Biochemistry, 2001,40(1): 28-36.
    [45]
    Singh G, Jasti J, Saravanan K, et al. Crystal structure of the complex formed between a group I phospholipase A2 and a naturally occurring fatty acid at 2.7 A resolution[J]. Protein Sci, 2005,14(2): 395-400.
    [46]
    Jabeen T, Singh N, Singh R K, et al. Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 A resolution reveals the presence of a new PLA2-like protein with a novel cys 32-Cys 49 disulphide bridge with a bound sugar at the substrate-binding site[J]. Proteins, 2006,62(2): 329-337.
    [47]
    Hu P, Sun L, Zhu Z Q, et al. Crystal structure of Natratoxin, a novel snake secreted phospholipaseA2 neurotoxin from Naja atra venom inhibiting A-type K(+) currents[J]. Proteins, 2008,72(2): 673-683.
    [48]
    Chandra V, Jasti J, Kaur P, et al. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution[J]. J Biol Chem, 2002,277(43): 41 079-41 085.
    [49]
    Singh R K, Ethayathulla A S, Jabeen T, et al. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A2: crystal structure of the complex formed between phospholipase A2 and aspirin at 1.9 angstroms resolution[J]. J Drug Target, 2005,13(2): 113-119.
    [50]
    Chandra V, Jasti J, Kaur P, et al. Structural basis of phospholipase A2 inhibition for the synthesis of prostaglandins by the plant alkaloid aristolochic acid from a 1.7 A crystal structure[J]. Biochemistry, 2002,41(36): 10 914-10 919.
    [51]
    Chandra V, Jasti J, Kaur P, et al. First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution[J]. J Mol Biol, 2002,320(2): 215-222.
    [52]
    Murakami M T, Arruda E Z, Melo P A, et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin[J]. J Mol Biol, 2005,350(3): 416-426.
    [53]
    Petrova T P A. Protein crystallography at subatomic resolution[J]. Reports on Progress In Physics, 2004,67(9): 1 565-1 605.
    [54]
    Liu Q, Huang Q, Teng M, et al. The crystal structure of a novel, inactive, lysine 49 PLA2 from Agkistrodon acutus venom: an ultrahigh resolution, AB initio structure determination[J]. J Biol Chem, 2003,278(42): 41 400-41 408.
    [55]
    Schreiber M C, Karlo J C, Kovalick G E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins[J]. Gene, 1997,191(2): 135-141.
    [56]
    Olson J H, Xiang X, Ziegert T, et al. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins[J]. Proc Natl Acad Sci U S A, 2001,98(20): 11 205-11 210.
    [57]
    Ookuma S, Fukuda M, Nishida E. Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans[J]. Curr Biol, 2003,13(5): 427-431.
    [58]
    Mochca-Morales J, Martin B M, Possani L D. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom[J]. Toxicon, 1990,28(3): 299-309.
    [59]
    Milne T J, Abbenante G, Tyndall J D A, et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily[J]. J Biol Chem, 2003,278(33): 31 105-31 110.
    [60]
    Morrissette J, Kratzschmar J, Haendler B, et al. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors[J]. Biophys J, 1995,68(6): 2 280-2 288.
    [61]
    Yamazaki Y, Koike H, Sugiyama Y, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction[J]. Eur J Biochem, 2002,269(11): 2 708-2 715.
    [62]
    Brown R L, Haley T L, West K A, et al. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels[J]. Proc Natl Acad Sci U S A, 1999,96(2): 754-759.
    [63]
    Wang J, Shen B, Guo M, et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel[J]. Biochemistry, 2005,44(30): 10 145-10 152.
    [64]
    Wang F, Li H, Liu M N, et al. Structural and functional analysis of natrin, a venom protein that targets various ion channels[J]. Biochem Biophys Res Commun, 2006,351(2): 443-448.
    [65]
    Guo M, Teng M, Niu L, et al. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold[J]. J Biol Chem, 2005,280(13): 12 405-12 412.
    [66]
    Shikamoto Y, Suto K, Yamazaki Y, et al. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom[J]. J Mol Biol, 2005,350(4): 735-743.
    [67]
    Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2[J]. Toxicon, 2007,50(7): 871-892.
    [68]
    Tsetlin V I, Karlsson E, Utkin Y N, et al. Interaction surfaces of neurotoxins and acetylcholine receptor[J]. Toxicon, 1982,20(1): 83-93.
    [69]
    Martin B M, Chibber B A, Maelicke A. The sites of neurotoxicity in alpha-cobratoxin[J]. J Biol Chem, 1983,258(14): 8 714-8 722.
    [70]
    Juan H F, Hung C C, Wang K T, et al. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics[J]. Biochem Biophys Res Commun, 1999,257(2): 500-510.
    [71]
    Tsernoglou D, Petsko G A. The crystal structure of a post-synaptic neurotoxin from sea snake at A resolution[J]. FEBS Lett, 1976,68(1): 1-4.
    [72]
    Low B W, Preston H S, Sato A, et al. Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor[J]. Proc Natl Acad Sci U S A, 1976,73(9): 2 991-2 994.
    [73]
    Bourne Y, Talley T T, Hansen S B, et al. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors[J]. EMBO J, 2005,24(8): 1 512-1 522.
    [74]
    Lou X, Liu Q, Tu X, et al. The atomic resolution crystal structure of atratoxin determined by single wavelength anomalous diffraction phasing[J]. J Biol Chem, 2004,279(37): 39 094-39 104.
    [75]
    Lou X, Tu X, Pan G, et al. Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin from Naja atra venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 6): 1 038-1 042.
    [76]
    Tu X, Huang Q, Lou X, et al. Purification, N-terminal sequencing, crystallization and preliminary X-ray diffraction analysis of atratoxin, a new short-chain alpha-neurotoxin from the venom of Naja naja atra[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 5): 839-842.
    [77]
    Xu G, Ulrichts H, Vauterin S, et al. How does agkicetin-C bind on platelet glycoprotein Ibalpha and achieve its platelet effects[J]. Toxicon, 2005,45(5): 561-570.
    [78]
    Zhang H, Yang Q, Sun M, et al. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions[J]. J Microbiol, 2004,42(4): 336-339.
    [79]
    Xu G, Teng M, Niu L, et al. Purification, characterization, crystallization and preliminary X-ray crystallographic analysis of two novel C-type lectin-like proteins: Aall-A and Aall-B from Deinagkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 11): 2 035-2 037.
    [80]
    Zang J, Teng M, Niu L. Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 4): 730-733.
    [81]
    Liu S, Zhu Z, Sun J, et al. Purification, crystallization and preliminary X-ray crystallographic analysis of agkaggregin, a C-type lectin-like protein from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 4): 675-678.
    [82]
    Rong H, Li Y, Lou X, et al. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007,63(Pt 2): 130-134.
    [83]
    Zhang H, Teng M, Niu L, et al. Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 5): 974-977.
    [84]
    Shikamoto Y, Morita T, Fujimoto Z, et al. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein[J]. J Biol Chem, 2003,278(26): 24 090-24 094.
    [85]
    Fukuda K, Doggett T, Laurenzi I J, et al. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation[J]. Nat Struct Mol Biol, 2005,12(2): 152-159.
  • 加载中

Catalog

    [1]
    Fox J W, Serrano S M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures[J]. Proteomics, 2008,8(4): 909-920.
    [2]
    Pahari S, Mackessy S P, Kini R M. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea)[J]. BMC Mol Biol, 2007,8: 115.
    [3]
    Moura-da-Silva A M, Butera D, Tanjoni I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells[J]. Curr Pharm Des, 2007,13(28): 2 893-2 905.
    [4]
    Bjarnason J B, Fox J W. Hemorrhagic metalloproteinases from snake venoms[J]. Pharmacol Ther, 1994,62(3): 325-372.
    [5]
    Fox J W, Serrano S M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases[J]. Toxicon, 2005,45(8): 969-985.
    [6]
    Gomis-Ruth F X, Kress L F, Kellermann J, et al. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin[J]. J Mol Biol, 1994,239(4): 513-544.
    [7]
    Zhang D, Botos I, Gomis-Rueth F X, et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)[J]. Proc Natl Acad Sci U S A, 1994,91(18): 8 447-8 451.
    [8]
    Kumasaka T, Yamamoto M, Moriyama H, et al. Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis[J]. J Biochem, 1996,119(1): 49-57.
    [9]
    Zhu X, Teng M, Niu L. Structure of acutolysin-C, a haemorrhagic toxin from the venom of Agkistrodon acutus, providing further evidence for the mechanism of the pH-dependent proteolytic reaction of zinc metalloproteinases[J]. Acta Crystallogr D Biol Crystallogr, 1999,55(Pt 11): 1 834-1 841.
    [10]
    Huang K F, Chiou S H, Ko T P, et al. The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 7): 1 118-1 128.
    [11]
    Watanabe L, Shannon J D, Valente R H, et al. Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities[J]. Protein Sci, 2003,12(10): 2 273-2 281.
    [12]
    Lou Z, Hou J, Liang X, et al. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus[J]. J Struct Biol, 2005,152(3): 195-203.
    [13]
    Bode W, Gomis-Ruth F X, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’[J]. FEBS Lett, 1993,331(1-2): 134-140.
    [14]
    Gong W, Zhu X, Liu S, et al. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus[J]. J Mol Biol, 1998,283(3): 657-668.
    [15]
    Takeda S, Igarashi T, Mori H, et al. Crystal structures of VAP1 reveal ADAMs MDC domain architecture and its unique C-shaped scaffold[J]. EMBO J, 2006,25(11): 2 388-2 396.
    [16]
    Igarashi T, Araki S, Mori H, et al. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins[J]. FEBS Lett, 2007,581(13): 2 416-2 422.
    [17]
    Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases[J]. FEBS Lett, 2007,581(30): 5 859-5 864.
    [18]
    Zang J, Zhu Z, Yu Y, et al. Purification, partial characterization and crystallization of acucetin, a protein containing both disintegrin-like and cysteine-rich domains released by auto-proteolysis of a P-III-type metalloproteinase AaH-IV from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 12): 2 310-2 312.
    [19]
    Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis[J]. Biochimie, 2000,82(9-10): 851-859.
    [20]
    Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis[J]. Biochim Biophys Acta, 2000,1477(1-2): 146-156.
    [21]
    Parry M A, Jacob U, Huber R, et al. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases[J]. Structure, 1998,6(9): 1 195-1 206.
    [22]
    Pirkle H. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committees Registry of Exogenous Hemostatic Factors[J]. Thromb Haemost, 1998,79(3): 675-683.
    [23]
    Zhang Y, Wisner A, Xiong Y, et al. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning[J]. J Biol Chem, 1995,270(17): 10 246-10 255.
    [24]
    Braud S, Le Bonniec B F, Bon C, et al. The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins[J]. Biochemistry, 2002,41(26): 8 478-8 484.
    [25]
    Braud S, Parry M A, Maroun R, et al. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases[J]. J Biol Chem, 2000,275(3): 1 823-1 828.
    [26]
    Zhang Y, Wisner A, Maroun R C, et al. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling[J]. J Biol Chem, 1997,272(33): 20 531-20 537.
    [27]
    Zhu Z, Gong P, Teng M, et al. Purification, N-terminal sequencing, partial characterization, crystallization and preliminary crystallographic analysis of two glycosylated serine proteinases from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 3): 547-550.
    [28]
    Zhu Z, Liang Z, Zhang T, et al. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases[J]. J Biol Chem, 2005,280(11): 10 524-10 529.
    [29]
    Murakami M T, Arni R K. Thrombomodulin-independent activation of protein C and specificity of hemostatically active snake venom serine proteinases: Crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator[J]. J Biol Chem, 2005,280(47): 39 309-39 315.
    [30]
    Kisiel W, Kondo S, Smith K J, et al. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom[J]. J Biol Chem, 1987,262(26): 12 607-12 613.
    [31]
    Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes[J]. Trends Biochem Sci, 1997,22(1): 1-2.
    [32]
    Schaloske R H, Dennis E A. The phospholipase A2 superfamily and its group numbering system[J]. Biochim Biophys Acta, 2006,1761(11): 1 246-1 259.
    [33]
    Murakami M T, Kuch U, Betzel C, et al. Crystal structure of a novel myotoxic Arg49 phospholipase A2 homolog (zhaoermiatoxin) from Zhaoermia mangshanensis snake venom: insights into Arg49 coordination and the role of Lys122 in the polarization of the C-terminus[J]. Toxicon, 2008,51(5): 723-735.
    [34]
    Kini R M, Evans H J. A model to explain the pharmacological effects of snake venom phospholipases A2[J]. Toxicon, 1989,27(6): 613-635.
    [35]
    da Silva Giotto M T, Garratt R C, Oliva G, et al. Crystallographic and spectroscopic characterization of a molecular hinge: conformational changes in bothropstoxin I, a dimeric Lys49-phospholipase A2 homologue[J]. Proteins, 1998,30(4): 442-454.
    [36]
    Lomonte B, Angulo Y, Calderon L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action[J]. Toxicon, 2003,42(8): 885-901.
    [37]
    Brunie S, Bolin J, Gewirth D, et al. The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center[J]. J Biol Chem, 1985,260(17): 9 742-9 749.
    [38]
    Wang X Q, Yang J, Gui L, et al. Crystal structure of an acidic phospholipase A2 from the venom of Agkistrodon halys pallas at 2.0 A resolution[J]. J Mol Biol, 1996,255(5): 669-676.
    [39]
    Scott D L, White S P, Otwinowski Z, et al. Interfacial catalysis: the mechanism of phospholipase A2[J]. Science, 1990,250(4 987): 1 541-1 546.
    [40]
    Rigden D J, Hwa L W, Marangoni S, et al. The structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai reveals unprecedented structural displacement of the calcium-binding loop: Possible relationship to cooperative substrate binding[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 2): 255-262.
    [41]
    Xu S, Gu L, Jiang T, et al. Structures of cadmium-binding acidic phospholipase A2 from the venom of Agkistrodon halys Pallas at 1.9A resolution[J]. Biochem Biophys Res Commun, 2003,300(2): 271-277.
    [42]
    Lok S M, Gao R, Rouault M, et al. Structure and function comparison of Micropechis ikaheka snake venom phospholipase A2 isoenzymes[J]. FEBS J, 2005,272(5): 1 211-1 220.
    [43]
    Ambrosio A L, Nonato M C, de Araujo H S S, et al. A molecular mechanism for Lys49-phospholipase A2 activity based on ligand-induced conformational change[J]. J Biol Chem, 2005,280(8): 7 326-7 335.
    [44]
    Lee W H, da Silva Giotto M T, Marangoni S, et al. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid[J]. Biochemistry, 2001,40(1): 28-36.
    [45]
    Singh G, Jasti J, Saravanan K, et al. Crystal structure of the complex formed between a group I phospholipase A2 and a naturally occurring fatty acid at 2.7 A resolution[J]. Protein Sci, 2005,14(2): 395-400.
    [46]
    Jabeen T, Singh N, Singh R K, et al. Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 A resolution reveals the presence of a new PLA2-like protein with a novel cys 32-Cys 49 disulphide bridge with a bound sugar at the substrate-binding site[J]. Proteins, 2006,62(2): 329-337.
    [47]
    Hu P, Sun L, Zhu Z Q, et al. Crystal structure of Natratoxin, a novel snake secreted phospholipaseA2 neurotoxin from Naja atra venom inhibiting A-type K(+) currents[J]. Proteins, 2008,72(2): 673-683.
    [48]
    Chandra V, Jasti J, Kaur P, et al. Crystal structure of a complex formed between a snake venom phospholipase A(2) and a potent peptide inhibitor Phe-Leu-Ser-Tyr-Lys at 1.8 A resolution[J]. J Biol Chem, 2002,277(43): 41 079-41 085.
    [49]
    Singh R K, Ethayathulla A S, Jabeen T, et al. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A2: crystal structure of the complex formed between phospholipase A2 and aspirin at 1.9 angstroms resolution[J]. J Drug Target, 2005,13(2): 113-119.
    [50]
    Chandra V, Jasti J, Kaur P, et al. Structural basis of phospholipase A2 inhibition for the synthesis of prostaglandins by the plant alkaloid aristolochic acid from a 1.7 A crystal structure[J]. Biochemistry, 2002,41(36): 10 914-10 919.
    [51]
    Chandra V, Jasti J, Kaur P, et al. First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution[J]. J Mol Biol, 2002,320(2): 215-222.
    [52]
    Murakami M T, Arruda E Z, Melo P A, et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin[J]. J Mol Biol, 2005,350(3): 416-426.
    [53]
    Petrova T P A. Protein crystallography at subatomic resolution[J]. Reports on Progress In Physics, 2004,67(9): 1 565-1 605.
    [54]
    Liu Q, Huang Q, Teng M, et al. The crystal structure of a novel, inactive, lysine 49 PLA2 from Agkistrodon acutus venom: an ultrahigh resolution, AB initio structure determination[J]. J Biol Chem, 2003,278(42): 41 400-41 408.
    [55]
    Schreiber M C, Karlo J C, Kovalick G E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins[J]. Gene, 1997,191(2): 135-141.
    [56]
    Olson J H, Xiang X, Ziegert T, et al. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins[J]. Proc Natl Acad Sci U S A, 2001,98(20): 11 205-11 210.
    [57]
    Ookuma S, Fukuda M, Nishida E. Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans[J]. Curr Biol, 2003,13(5): 427-431.
    [58]
    Mochca-Morales J, Martin B M, Possani L D. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom[J]. Toxicon, 1990,28(3): 299-309.
    [59]
    Milne T J, Abbenante G, Tyndall J D A, et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily[J]. J Biol Chem, 2003,278(33): 31 105-31 110.
    [60]
    Morrissette J, Kratzschmar J, Haendler B, et al. Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors[J]. Biophys J, 1995,68(6): 2 280-2 288.
    [61]
    Yamazaki Y, Koike H, Sugiyama Y, et al. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction[J]. Eur J Biochem, 2002,269(11): 2 708-2 715.
    [62]
    Brown R L, Haley T L, West K A, et al. Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels[J]. Proc Natl Acad Sci U S A, 1999,96(2): 754-759.
    [63]
    Wang J, Shen B, Guo M, et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel[J]. Biochemistry, 2005,44(30): 10 145-10 152.
    [64]
    Wang F, Li H, Liu M N, et al. Structural and functional analysis of natrin, a venom protein that targets various ion channels[J]. Biochem Biophys Res Commun, 2006,351(2): 443-448.
    [65]
    Guo M, Teng M, Niu L, et al. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold[J]. J Biol Chem, 2005,280(13): 12 405-12 412.
    [66]
    Shikamoto Y, Suto K, Yamazaki Y, et al. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom[J]. J Mol Biol, 2005,350(4): 735-743.
    [67]
    Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2[J]. Toxicon, 2007,50(7): 871-892.
    [68]
    Tsetlin V I, Karlsson E, Utkin Y N, et al. Interaction surfaces of neurotoxins and acetylcholine receptor[J]. Toxicon, 1982,20(1): 83-93.
    [69]
    Martin B M, Chibber B A, Maelicke A. The sites of neurotoxicity in alpha-cobratoxin[J]. J Biol Chem, 1983,258(14): 8 714-8 722.
    [70]
    Juan H F, Hung C C, Wang K T, et al. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics[J]. Biochem Biophys Res Commun, 1999,257(2): 500-510.
    [71]
    Tsernoglou D, Petsko G A. The crystal structure of a post-synaptic neurotoxin from sea snake at A resolution[J]. FEBS Lett, 1976,68(1): 1-4.
    [72]
    Low B W, Preston H S, Sato A, et al. Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor[J]. Proc Natl Acad Sci U S A, 1976,73(9): 2 991-2 994.
    [73]
    Bourne Y, Talley T T, Hansen S B, et al. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors[J]. EMBO J, 2005,24(8): 1 512-1 522.
    [74]
    Lou X, Liu Q, Tu X, et al. The atomic resolution crystal structure of atratoxin determined by single wavelength anomalous diffraction phasing[J]. J Biol Chem, 2004,279(37): 39 094-39 104.
    [75]
    Lou X, Tu X, Pan G, et al. Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain alpha-neurotoxin from Naja atra venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 6): 1 038-1 042.
    [76]
    Tu X, Huang Q, Lou X, et al. Purification, N-terminal sequencing, crystallization and preliminary X-ray diffraction analysis of atratoxin, a new short-chain alpha-neurotoxin from the venom of Naja naja atra[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 5): 839-842.
    [77]
    Xu G, Ulrichts H, Vauterin S, et al. How does agkicetin-C bind on platelet glycoprotein Ibalpha and achieve its platelet effects[J]. Toxicon, 2005,45(5): 561-570.
    [78]
    Zhang H, Yang Q, Sun M, et al. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions[J]. J Microbiol, 2004,42(4): 336-339.
    [79]
    Xu G, Teng M, Niu L, et al. Purification, characterization, crystallization and preliminary X-ray crystallographic analysis of two novel C-type lectin-like proteins: Aall-A and Aall-B from Deinagkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 11): 2 035-2 037.
    [80]
    Zang J, Teng M, Niu L. Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2003,59(Pt 4): 730-733.
    [81]
    Liu S, Zhu Z, Sun J, et al. Purification, crystallization and preliminary X-ray crystallographic analysis of agkaggregin, a C-type lectin-like protein from Agkistrodon acutus venom[J]. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 4): 675-678.
    [82]
    Rong H, Li Y, Lou X, et al. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007,63(Pt 2): 130-134.
    [83]
    Zhang H, Teng M, Niu L, et al. Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom[J]. Acta Crystallogr D Biol Crystallogr, 2004,60(Pt 5): 974-977.
    [84]
    Shikamoto Y, Morita T, Fujimoto Z, et al. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein[J]. J Biol Chem, 2003,278(26): 24 090-24 094.
    [85]
    Fukuda K, Doggett T, Laurenzi I J, et al. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation[J]. Nat Struct Mol Biol, 2005,12(2): 152-159.

    Article Metrics

    Article views (598) PDF downloads(253)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return