ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry

On-site preparation of one-dimensional C60 polymer crystals

Cite this:
CSTR: 32290.14.JUSTC-2024-0071
https://doi.org/10.52396/JUSTC-2024-0071
More Information
  • Author Bio:

    Xia Wang is a Ph.D. candidate at the University of Science and Technology of China. Her research mainly focuses on microstructural regulation techniques for novel carbon materials from fullerene and graphene

    Yanwu Zhu is currently a Full Professor at the University of Science and Technology of China. He obtained his Ph.D. degree in Physics from the National University of Singapore in 2006. His current research interests include the synthesis of novel carbon nanomaterials and their applications for energy storage and conversion

  • Corresponding author: E-mail: zhuyanwu@ustc.edu.cn
  • Received Date: 17 May 2024
  • Accepted Date: 09 June 2024
  • The preparation of large crystals is highly important for the characterization and application of a newly found structure but remains a challenge for one-dimensional (1D) C60 polymers. In this work, we successfully fabricated a 1D C60 polymer crystal via on-site annealing of a millimeter-sized C60 molecular crystal with α-Li3N at 500 °C and ambient pressure. Characterizations show that the C60 cages in the crystal have been efficiently connected, forming 1D chains along the <110> direction in an orthorhombic 3D structure. At the same time, the crystal maintains a morphology similar to that of the pristine C60 crystal, providing opportunities for characterization of all the facets of the crystal via Raman spectroscopy and thus suggesting the formation mechanism of such crystals.
    One-dimensional C60 polymer crystals preserving the morphology were prepared by annealing with ɑ-Li3N at 500 °C for 5 h.
    The preparation of large crystals is highly important for the characterization and application of a newly found structure but remains a challenge for one-dimensional (1D) C60 polymers. In this work, we successfully fabricated a 1D C60 polymer crystal via on-site annealing of a millimeter-sized C60 molecular crystal with α-Li3N at 500 °C and ambient pressure. Characterizations show that the C60 cages in the crystal have been efficiently connected, forming 1D chains along the <110> direction in an orthorhombic 3D structure. At the same time, the crystal maintains a morphology similar to that of the pristine C60 crystal, providing opportunities for characterization of all the facets of the crystal via Raman spectroscopy and thus suggesting the formation mechanism of such crystals.
    • This work proposed an on-site preparation of 1D C60 polymer crystals preserving the original morphology by annealing C60 molecular crystals with α-Li3N or Li at 500 °C or 480 °C, respectively.
    • The crystalline characteristics of C60 were maintained after the formation of covalent bonds between adjacent C60 molecules along the <110> direction via a [2+2] cycloaddition reaction.
    • The phase transformation from C60 molecules to the C60 polymer occurred in the entire crystal.

  • loading
  • [1]
    Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0
    [2]
    Bao L P, Xu T, Guo K, et al. Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Advanced Materials, 2022, 34 (52): 2200189. doi: 10.1002/adma.202200189
    [3]
    Álvarez-Murga M, Hodeau J L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon, 2015, 82: 381–407. doi: 10.1016/j.carbon.2014.10.083
    [4]
    Zhao Y B, Poirier D M, Pechman R J, et al. Electron stimulated polymerization of solid C60. Applied Physics Letters, 1994, 64 (5): 577–579. doi: 10.1063/1.111113
    [5]
    Rao A M, Zhou P, Wang K A, et al. Photoinduced polymerization of solid C60 films. Science, 1993, 259 (5097): 955–957. doi: 10.1126/science.259.5097.955
    [6]
    Takahashi N, Dock H, Matsuzawa N, et al. Plasma-polymerized C60/C70 mixture films: Electric conductivity and structure. Journal of Applied Physics, 1993, 74: 5790–5798. doi: 10.1063/1.354199
    [7]
    Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60. Nature, 1994, 370: 636–639. doi: 10.1038/370636a0
    [8]
    Blank V D, Buga S G, Dubitsky G A, et al. High-pressure polymerized phases of C60. Carbon, 1998, 36 (4): 319–343. doi: 10.1016/S0008-6223(97)00234-0
    [9]
    Pekker S, Forró L, Mihály L, et al. Orthorhombic A1C60: A conducting linear alkali fulleride polymer. Solid State Communications, 1994, 90 (6): 349–352. doi: 10.1016/0038-1098(94)90796-X
    [10]
    Margadonna S, Pontiroli D, Belli M, et al. Li4C60: A polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. Journal of the American Chemical Society, 2004, 126 (46): 15032–15033. doi: 10.1021/ja044838o
    [11]
    Oszlányi G, Baumgartner G, Faigel G, et al. Na4C60: An alkali intercalated two-dimensional polymer. Physical Review Letters, 1997, 78 (23): 4438. doi: 10.1103/PhysRevLett.78.4438
    [12]
    Hou L X, Cui X P, Guan B, et al. Synthesis of a monolayer fullerene network. Nature, 2022, 606: 507–510. doi: 10.1038/s41586-022-04771-5
    [13]
    Okada S, Saito S, Oshiyama A. New metallic crystalline carbon: Three dimensionally polymerized C60 fullerite. Physical Review Letters, 1999, 83 (10): 1986. doi: 10.1103/PhysRevLett.83.1986
    [14]
    Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60. Nature, 2023, 614: 95–101. doi: 10.1038/s41586-022-05532-0
    [15]
    Meng R L, Ramirez D, Jiang X, et al. Growth of large, defect-free pure C60 single crystals. Applied Physics Letters, 1991, 59: 3402–3403. doi: 10.1063/1.105688
    [16]
    Sundqvist B. Fullerenes under high pressures. Advances in Physics, 1999, 48 (1): 1–134. doi: 10.1080/000187399243464
    [17]
    Porezag D, Pederson M R, Frauenheim T, et al. Structure, stability, and vibrational properties of polymerized C60. Physical Review B, 1995, 52 (20): 14963. doi: 10.1103/PhysRevB.52.14963
    [18]
    Haddon R C, Hebard A F, Rosseinsky M J, et al. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322. doi: 10.1038/350320a0
    [19]
    Wågberg T, Sundqvist B. Raman study of the two-dimensional polymers Na4C60 and tetragonal C60. Physical Review B, 2002, 65 (15): 155421. doi: 10.1103/PhysRevB.65.155421
    [20]
    Kotyczka-Morańska M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. Journal of the Energy Institute, 2019, 92 (4): 923–932. doi: 10.1016/j.joei.2018.07.012
    [21]
    Chowdhury A K M S, Cameron D C, Hashmi M S J. Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature. Surface and Coatings Technology, 1999, 112: 133–139. doi: 10.1016/S0257-8972(98)00761-0
    [22]
    Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7 (38): eabi5520. doi: 10.1126/sciadv.abi5520
    [23]
    Wang B, Xiao S F, Gan X L, et al. Diffusion properties of liquid lithium-lead alloys from atomistic simulation. Computational Materials Science, 2014, 93: 74–80. doi: 10.1016/j.commatsci.2014.06.020
    [24]
    Jungblut B, Hoinkis E. Diffusion of lithium in highly oriented pyrolytic graphite at low concentrations and high temperatures. Physical Review B, 1989, 40 (16): 10810. doi: 10.1103/PhysRevB.40.10810
  • JUSTC-2024-0071 Supporting information.docx
  • 加载中

Catalog

    Figure  1.  (a) Schematic of the preparation of C60 crystals by physical vapor deposition (T1 = 600 °C, T2 = 480 °C). (b) Optical images of C60 crystals. (c) Schematic of the preparation of polymer crystals by annealing C60 crystals with α-Li3N at 500 °C for 5 h. (d) Optical image of crystals after annealing.

    Figure  2.  SEM images of the (a) surface, (b) internal and (c) magnified surfaces of a C60 crystal. (d, e, f) SEM images of C60 polymer crystals at different magnifications. (g) XRD patterns and (h) Raman spectra of C60 crystals before and after annealing with α-Li3N at 500 °C for 5 h taken with a laser wavelength of 532 nm.

    Figure  3.  HRTEM images and SAED patterns of C60 crystals (a, b) before and (c, d) after annealing with α-Li3N at 500 °C for 5 h.

    Figure  4.  (a) SEM image and (b) Raman spectra of three facets of one polymer particle. (c) SEM image and (d) Raman spectrum of the internal site of the particle. (e) SEM image and (f) Raman spectrum of a crystal obtained by annealing the C60 molecular crystal with a Li metal plate at 480 °C for 5 h.

    [1]
    Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0
    [2]
    Bao L P, Xu T, Guo K, et al. Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Advanced Materials, 2022, 34 (52): 2200189. doi: 10.1002/adma.202200189
    [3]
    Álvarez-Murga M, Hodeau J L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon, 2015, 82: 381–407. doi: 10.1016/j.carbon.2014.10.083
    [4]
    Zhao Y B, Poirier D M, Pechman R J, et al. Electron stimulated polymerization of solid C60. Applied Physics Letters, 1994, 64 (5): 577–579. doi: 10.1063/1.111113
    [5]
    Rao A M, Zhou P, Wang K A, et al. Photoinduced polymerization of solid C60 films. Science, 1993, 259 (5097): 955–957. doi: 10.1126/science.259.5097.955
    [6]
    Takahashi N, Dock H, Matsuzawa N, et al. Plasma-polymerized C60/C70 mixture films: Electric conductivity and structure. Journal of Applied Physics, 1993, 74: 5790–5798. doi: 10.1063/1.354199
    [7]
    Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60. Nature, 1994, 370: 636–639. doi: 10.1038/370636a0
    [8]
    Blank V D, Buga S G, Dubitsky G A, et al. High-pressure polymerized phases of C60. Carbon, 1998, 36 (4): 319–343. doi: 10.1016/S0008-6223(97)00234-0
    [9]
    Pekker S, Forró L, Mihály L, et al. Orthorhombic A1C60: A conducting linear alkali fulleride polymer. Solid State Communications, 1994, 90 (6): 349–352. doi: 10.1016/0038-1098(94)90796-X
    [10]
    Margadonna S, Pontiroli D, Belli M, et al. Li4C60: A polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. Journal of the American Chemical Society, 2004, 126 (46): 15032–15033. doi: 10.1021/ja044838o
    [11]
    Oszlányi G, Baumgartner G, Faigel G, et al. Na4C60: An alkali intercalated two-dimensional polymer. Physical Review Letters, 1997, 78 (23): 4438. doi: 10.1103/PhysRevLett.78.4438
    [12]
    Hou L X, Cui X P, Guan B, et al. Synthesis of a monolayer fullerene network. Nature, 2022, 606: 507–510. doi: 10.1038/s41586-022-04771-5
    [13]
    Okada S, Saito S, Oshiyama A. New metallic crystalline carbon: Three dimensionally polymerized C60 fullerite. Physical Review Letters, 1999, 83 (10): 1986. doi: 10.1103/PhysRevLett.83.1986
    [14]
    Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60. Nature, 2023, 614: 95–101. doi: 10.1038/s41586-022-05532-0
    [15]
    Meng R L, Ramirez D, Jiang X, et al. Growth of large, defect-free pure C60 single crystals. Applied Physics Letters, 1991, 59: 3402–3403. doi: 10.1063/1.105688
    [16]
    Sundqvist B. Fullerenes under high pressures. Advances in Physics, 1999, 48 (1): 1–134. doi: 10.1080/000187399243464
    [17]
    Porezag D, Pederson M R, Frauenheim T, et al. Structure, stability, and vibrational properties of polymerized C60. Physical Review B, 1995, 52 (20): 14963. doi: 10.1103/PhysRevB.52.14963
    [18]
    Haddon R C, Hebard A F, Rosseinsky M J, et al. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322. doi: 10.1038/350320a0
    [19]
    Wågberg T, Sundqvist B. Raman study of the two-dimensional polymers Na4C60 and tetragonal C60. Physical Review B, 2002, 65 (15): 155421. doi: 10.1103/PhysRevB.65.155421
    [20]
    Kotyczka-Morańska M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. Journal of the Energy Institute, 2019, 92 (4): 923–932. doi: 10.1016/j.joei.2018.07.012
    [21]
    Chowdhury A K M S, Cameron D C, Hashmi M S J. Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature. Surface and Coatings Technology, 1999, 112: 133–139. doi: 10.1016/S0257-8972(98)00761-0
    [22]
    Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7 (38): eabi5520. doi: 10.1126/sciadv.abi5520
    [23]
    Wang B, Xiao S F, Gan X L, et al. Diffusion properties of liquid lithium-lead alloys from atomistic simulation. Computational Materials Science, 2014, 93: 74–80. doi: 10.1016/j.commatsci.2014.06.020
    [24]
    Jungblut B, Hoinkis E. Diffusion of lithium in highly oriented pyrolytic graphite at low concentrations and high temperatures. Physical Review B, 1989, 40 (16): 10810. doi: 10.1103/PhysRevB.40.10810

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return