[1] |
Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0
|
[2] |
Bao L P, Xu T, Guo K, et al. Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Advanced Materials, 2022, 34 (52): 2200189. doi: 10.1002/adma.202200189
|
[3] |
Álvarez-Murga M, Hodeau J L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon, 2015, 82: 381–407. doi: 10.1016/j.carbon.2014.10.083
|
[4] |
Zhao Y B, Poirier D M, Pechman R J, et al. Electron stimulated polymerization of solid C60. Applied Physics Letters, 1994, 64 (5): 577–579. doi: 10.1063/1.111113
|
[5] |
Rao A M, Zhou P, Wang K A, et al. Photoinduced polymerization of solid C60 films. Science, 1993, 259 (5097): 955–957. doi: 10.1126/science.259.5097.955
|
[6] |
Takahashi N, Dock H, Matsuzawa N, et al. Plasma-polymerized C60/C70 mixture films: Electric conductivity and structure. Journal of Applied Physics, 1993, 74: 5790–5798. doi: 10.1063/1.354199
|
[7] |
Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60. Nature, 1994, 370: 636–639. doi: 10.1038/370636a0
|
[8] |
Blank V D, Buga S G, Dubitsky G A, et al. High-pressure polymerized phases of C60. Carbon, 1998, 36 (4): 319–343. doi: 10.1016/S0008-6223(97)00234-0
|
[9] |
Pekker S, Forró L, Mihály L, et al. Orthorhombic A1C60: A conducting linear alkali fulleride polymer. Solid State Communications, 1994, 90 (6): 349–352. doi: 10.1016/0038-1098(94)90796-X
|
[10] |
Margadonna S, Pontiroli D, Belli M, et al. Li4C60: A polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. Journal of the American Chemical Society, 2004, 126 (46): 15032–15033. doi: 10.1021/ja044838o
|
[11] |
Oszlányi G, Baumgartner G, Faigel G, et al. Na4C60: An alkali intercalated two-dimensional polymer. Physical Review Letters, 1997, 78 (23): 4438. doi: 10.1103/PhysRevLett.78.4438
|
[12] |
Hou L X, Cui X P, Guan B, et al. Synthesis of a monolayer fullerene network. Nature, 2022, 606: 507–510. doi: 10.1038/s41586-022-04771-5
|
[13] |
Okada S, Saito S, Oshiyama A. New metallic crystalline carbon: Three dimensionally polymerized C60 fullerite. Physical Review Letters, 1999, 83 (10): 1986. doi: 10.1103/PhysRevLett.83.1986
|
[14] |
Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60. Nature, 2023, 614: 95–101. doi: 10.1038/s41586-022-05532-0
|
[15] |
Meng R L, Ramirez D, Jiang X, et al. Growth of large, defect-free pure C60 single crystals. Applied Physics Letters, 1991, 59: 3402–3403. doi: 10.1063/1.105688
|
[16] |
Sundqvist B. Fullerenes under high pressures. Advances in Physics, 1999, 48 (1): 1–134. doi: 10.1080/000187399243464
|
[17] |
Porezag D, Pederson M R, Frauenheim T, et al. Structure, stability, and vibrational properties of polymerized C60. Physical Review B, 1995, 52 (20): 14963. doi: 10.1103/PhysRevB.52.14963
|
[18] |
Haddon R C, Hebard A F, Rosseinsky M J, et al. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322. doi: 10.1038/350320a0
|
[19] |
Wågberg T, Sundqvist B. Raman study of the two-dimensional polymers Na4C60 and tetragonal C60. Physical Review B, 2002, 65 (15): 155421. doi: 10.1103/PhysRevB.65.155421
|
[20] |
Kotyczka-Morańska M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. Journal of the Energy Institute, 2019, 92 (4): 923–932. doi: 10.1016/j.joei.2018.07.012
|
[21] |
Chowdhury A K M S, Cameron D C, Hashmi M S J. Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature. Surface and Coatings Technology, 1999, 112: 133–139. doi: 10.1016/S0257-8972(98)00761-0
|
[22] |
Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7 (38): eabi5520. doi: 10.1126/sciadv.abi5520
|
[23] |
Wang B, Xiao S F, Gan X L, et al. Diffusion properties of liquid lithium-lead alloys from atomistic simulation. Computational Materials Science, 2014, 93: 74–80. doi: 10.1016/j.commatsci.2014.06.020
|
[24] |
Jungblut B, Hoinkis E. Diffusion of lithium in highly oriented pyrolytic graphite at low concentrations and high temperatures. Physical Review B, 1989, 40 (16): 10810. doi: 10.1103/PhysRevB.40.10810
|
JUSTC-2024-0071 Supporting information.docx |
Figure 1. (a) Schematic of the preparation of C60 crystals by physical vapor deposition (T1 = 600 °C, T2 = 480 °C). (b) Optical images of C60 crystals. (c) Schematic of the preparation of polymer crystals by annealing C60 crystals with α-Li3N at 500 °C for 5 h. (d) Optical image of crystals after annealing.
Figure 2. SEM images of the (a) surface, (b) internal and (c) magnified surfaces of a C60 crystal. (d, e, f) SEM images of C60 polymer crystals at different magnifications. (g) XRD patterns and (h) Raman spectra of C60 crystals before and after annealing with α-Li3N at 500 °C for 5 h taken with a laser wavelength of 532 nm.
Figure 4. (a) SEM image and (b) Raman spectra of three facets of one polymer particle. (c) SEM image and (d) Raman spectrum of the internal site of the particle. (e) SEM image and (f) Raman spectrum of a crystal obtained by annealing the C60 molecular crystal with a Li metal plate at 480 °C for 5 h.
[1] |
Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0
|
[2] |
Bao L P, Xu T, Guo K, et al. Supramolecular engineering of crystalline fullerene micro-/nano-architectures. Advanced Materials, 2022, 34 (52): 2200189. doi: 10.1002/adma.202200189
|
[3] |
Álvarez-Murga M, Hodeau J L. Structural phase transitions of C60 under high-pressure and high-temperature. Carbon, 2015, 82: 381–407. doi: 10.1016/j.carbon.2014.10.083
|
[4] |
Zhao Y B, Poirier D M, Pechman R J, et al. Electron stimulated polymerization of solid C60. Applied Physics Letters, 1994, 64 (5): 577–579. doi: 10.1063/1.111113
|
[5] |
Rao A M, Zhou P, Wang K A, et al. Photoinduced polymerization of solid C60 films. Science, 1993, 259 (5097): 955–957. doi: 10.1126/science.259.5097.955
|
[6] |
Takahashi N, Dock H, Matsuzawa N, et al. Plasma-polymerized C60/C70 mixture films: Electric conductivity and structure. Journal of Applied Physics, 1993, 74: 5790–5798. doi: 10.1063/1.354199
|
[7] |
Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60. Nature, 1994, 370: 636–639. doi: 10.1038/370636a0
|
[8] |
Blank V D, Buga S G, Dubitsky G A, et al. High-pressure polymerized phases of C60. Carbon, 1998, 36 (4): 319–343. doi: 10.1016/S0008-6223(97)00234-0
|
[9] |
Pekker S, Forró L, Mihály L, et al. Orthorhombic A1C60: A conducting linear alkali fulleride polymer. Solid State Communications, 1994, 90 (6): 349–352. doi: 10.1016/0038-1098(94)90796-X
|
[10] |
Margadonna S, Pontiroli D, Belli M, et al. Li4C60: A polymeric fulleride with a two-dimensional architecture and mixed interfullerene bonding motifs. Journal of the American Chemical Society, 2004, 126 (46): 15032–15033. doi: 10.1021/ja044838o
|
[11] |
Oszlányi G, Baumgartner G, Faigel G, et al. Na4C60: An alkali intercalated two-dimensional polymer. Physical Review Letters, 1997, 78 (23): 4438. doi: 10.1103/PhysRevLett.78.4438
|
[12] |
Hou L X, Cui X P, Guan B, et al. Synthesis of a monolayer fullerene network. Nature, 2022, 606: 507–510. doi: 10.1038/s41586-022-04771-5
|
[13] |
Okada S, Saito S, Oshiyama A. New metallic crystalline carbon: Three dimensionally polymerized C60 fullerite. Physical Review Letters, 1999, 83 (10): 1986. doi: 10.1103/PhysRevLett.83.1986
|
[14] |
Pan F, Ni K, Xu T, et al. Long-range ordered porous carbons produced from C60. Nature, 2023, 614: 95–101. doi: 10.1038/s41586-022-05532-0
|
[15] |
Meng R L, Ramirez D, Jiang X, et al. Growth of large, defect-free pure C60 single crystals. Applied Physics Letters, 1991, 59: 3402–3403. doi: 10.1063/1.105688
|
[16] |
Sundqvist B. Fullerenes under high pressures. Advances in Physics, 1999, 48 (1): 1–134. doi: 10.1080/000187399243464
|
[17] |
Porezag D, Pederson M R, Frauenheim T, et al. Structure, stability, and vibrational properties of polymerized C60. Physical Review B, 1995, 52 (20): 14963. doi: 10.1103/PhysRevB.52.14963
|
[18] |
Haddon R C, Hebard A F, Rosseinsky M J, et al. Conducting films of C60 and C70 by alkali-metal doping. Nature, 1991, 350: 320–322. doi: 10.1038/350320a0
|
[19] |
Wågberg T, Sundqvist B. Raman study of the two-dimensional polymers Na4C60 and tetragonal C60. Physical Review B, 2002, 65 (15): 155421. doi: 10.1103/PhysRevB.65.155421
|
[20] |
Kotyczka-Morańska M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. Journal of the Energy Institute, 2019, 92 (4): 923–932. doi: 10.1016/j.joei.2018.07.012
|
[21] |
Chowdhury A K M S, Cameron D C, Hashmi M S J. Bonding structure in carbon nitride films: variation with nitrogen content and annealing temperature. Surface and Coatings Technology, 1999, 112: 133–139. doi: 10.1016/S0257-8972(98)00761-0
|
[22] |
Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7 (38): eabi5520. doi: 10.1126/sciadv.abi5520
|
[23] |
Wang B, Xiao S F, Gan X L, et al. Diffusion properties of liquid lithium-lead alloys from atomistic simulation. Computational Materials Science, 2014, 93: 74–80. doi: 10.1016/j.commatsci.2014.06.020
|
[24] |
Jungblut B, Hoinkis E. Diffusion of lithium in highly oriented pyrolytic graphite at low concentrations and high temperatures. Physical Review B, 1989, 40 (16): 10810. doi: 10.1103/PhysRevB.40.10810
|