ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Physics 12 October 2024

On capped Higgs positivity cone

Cite this:
https://doi.org/10.52396/JUSTC-2023-0159
More Information
  • Author Bio:

    Dong-Yu Hong is currently a Ph.D. student at the University of Science and Technology of China. His research mainly focuses on positivity bounds in effective field theories

    Zhuo-Hui Wang is currently a master’s student at the University of Science and Technology of China. His research mainly focuses on positivity bounds in effective field theories

    Shuang-Yong Zhou is currently a Professor of Physics at the University of Science and Technology of China. He received his Ph.D. degree from the University of Nottingham in 2012 and subsequently held postdoctoral positions at SISSA in Trieste, Case Western Reserve University, and Imperial College London. His current research interests include S-matrix bootstrap/positivity bounds in effective field theories and their applications in particle physics and gravitational theories, as well as nontopological solitons and nonperturbative field simulations

  • Corresponding author: E-mail: zhoushy@ustc.edu.cn
  • Received Date: 22 November 2023
  • Accepted Date: 05 March 2024
  • Available Online: 12 October 2024
  • The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds. It has been shown that while the positivity part of the ultraviolet (UV) partial wave unitarity leads to the Wilson coefficients living in a convex cone, further including the nonpositivity part caps the cone from above. For Higgs scattering, a capped positivity cone was obtained using a simplified, linear unitarity condition without utilizing the full internal symmetries of Higgs scattering. Here, we further implement stronger nonlinear unitarity conditions from the UV, which generically gives rise to better bounds. We show that, for the Higgs case in particular, while the nonlinear unitarity conditions per se do not enhance the bounds, the fuller use of the internal symmetries do shrink the capped positivity cone significantly.
    The bound on two dim-8 coefficients of the Higgs. The orange and red regions represent the results of the current paper using linear and nonlinear unitarity conditions, respectively, with all the symmetries of the SMEFT Higgs included, while the blue region represents the previous result using linear unitarity conditions but without full Higgs symmetry.
    The Wilson coefficients of the standard model effective field theory are subject to a series of positivity bounds. It has been shown that while the positivity part of the ultraviolet (UV) partial wave unitarity leads to the Wilson coefficients living in a convex cone, further including the nonpositivity part caps the cone from above. For Higgs scattering, a capped positivity cone was obtained using a simplified, linear unitarity condition without utilizing the full internal symmetries of Higgs scattering. Here, we further implement stronger nonlinear unitarity conditions from the UV, which generically gives rise to better bounds. We show that, for the Higgs case in particular, while the nonlinear unitarity conditions per se do not enhance the bounds, the fuller use of the internal symmetries do shrink the capped positivity cone significantly.
    • We cap the positivity cone from above by making fuller use of unitarity conditions.
    • We present a systematic method for obtaining more robust positivity bounds by employing nonlinear unitarity conditions and incorporating all symmetries of the SMEFT Higgs.
    • We explain the differences in performance between linear and nonlinear unitarity conditions, demonstrating how the nonlinear unitarity conditions can be reduced to the linear ones.

  • loading
  • [1]
    Adams A, Arkani-Hamed N, Dubovsky S, et al. Causality, analyticity and an IR obstruction to UV completion. Journal of High Energy Physics, 2006, 2006: 014. doi: 10.1088/1126-6708/2006/10/014
    [2]
    de Rham C, Melville S, Tolley A J, et al. Positivity bounds for scalar field theories. Physical Review D, 2017, 96: 081702. doi: 10.1103/physrevd.96.081702
    [3]
    de Rham C, Melville S, Tolley A J, et al. UV complete me: Positivity bounds for particles with spin. Journal of High Energy Physics, 2018, 2018: 11. doi: 10.1007/jhep03(2018)011
    [4]
    Arkani-Hamed N, Huang T C, Huang Y T. The EFT-hedron. Journal of High Energy Physics, 2021, 2021: 259. doi: 10.1007/jhep05(2021)259
    [5]
    Bellazzini B, Miró J E, Rattazzi R, et al. Positive moments for scattering amplitudes. Physical Review D, 2021, 104: 036006. doi: 10.1103/physrevd.104.036006
    [6]
    Tolley A J, Wang Z Y, Zhou S Y. New positivity bounds from full crossing symmetry. Journal of High Energy Physics, 2021, 2021: 255. doi: 10.1007/jhep05(2021)255
    [7]
    Caron-Huot S, Van Duong V. Extremal effective field theories. Journal of High Energy Physics, 2021, 2021: 280. doi: 10.1007/jhep05(2021)280
    [8]
    Chiang L Y, Huang Y T, Li W, et al. Into the EFThedron and UV constraints from IR consistency. Journal of High Energy Physics, 2022, 2021: 63. doi: 10.1007/jhep03(2022)063
    [9]
    Sinha A, Zahed A. Crossing symmetric dispersion relations in quantum field theories. Physical Review Letters, 2021, 126: 181601. doi: 10.1103/physrevlett.126.181601
    [10]
    Zhang C, Zhou S Y. Convex geometry perspective on the (standard model) effective field theory space. Physical Review Letters, 2020, 125: 201601. doi: 10.1103/physrevlett.125.201601
    [11]
    Li X, Xu H, Yang C, et al. Positivity in multifield effective field theories. Physical Review Letters, 2021, 127: 121601. doi: 10.1103/physrevlett.127.121601
    [12]
    Bellazzini B, Martucci L, Torre R. Symmetries, sum rules and constraints on effective field theories. Journal of High Energy Physics, 2014, 2014: 100. doi: 10.1007/jhep09(2014)100
    [13]
    Bellazzini B. Softness and amplitudes’ positivity for spinning particles. Journal of High Energy Physics, 2017, 2017: 34. doi: 10.1007/jhep02(2017)034
    [14]
    Bern Z, Kosmopoulos D, Zhiboedov A. Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude. Journal of Physics A: Mathematical and Theoretical, 2021, 54: 344002. doi: 10.1088/1751-8121/ac0e51
    [15]
    Alberte L, de Rham C, Jaitly S, et al. Positivity bounds and the massless spin-2 pole. Physical Review D, 2020, 102: 125023. doi: 10.1103/physrevd.102.125023
    [16]
    Tokuda J, Aoki K, Hirano S. Gravitational positivity bounds. Journal of High Energy Physics, 2020, 2020: 54. doi: 10.1007/jhep11(2020)054
    [17]
    Caron-Huot S, Mazáč D, Rastelli L, et al. Sharp boundaries for the swampland. Journal of High Energy Physics, 2021, 2021: 110. doi: 10.1007/jhep07(2021)110
    [18]
    Grall T, Melville S. Positivity bounds without boosts: New constraints on low energy effective field theories from the UV. Physical Review D, 2022, 105: L121301. doi: 10.1103/physrevd.105.l121301
    [19]
    Du Z Z, Zhang C, Zhou S Y. Triple crossing positivity bounds for multi-field theories. Journal of High Energy Physics, 2021, 2021: 115. doi: 10.1007/jhep12(2021)115
    [20]
    Alberte L, de Rham C, Jaitly S, et al. Reverse bootstrapping: IR lessons for UV physics. Physical Review Letters, 2022, 128: 051602. doi: 10.1103/physrevlett.128.051602
    [21]
    Bellazzini B, Riembau M, Riva F. IR side of positivity bounds. Physical Review D, 2022, 106: 105008. doi: 10.1103/physrevd.106.105008
    [22]
    Dutta Chowdhury S, Ghosh K, Haldar P, et al. Crossing symmetric spinning S-matrix bootstrap: EFT bounds. SciPost Physics, 2022, 13: 51. doi: 10.21468/scipostphys.13.3.051
    [23]
    Chiang L Y, Huang Y T, Rodina L, et al. De-projecting the EFThedron. Journal of High Energy Physics, 2024, 2024: 102. doi: 10.1007/jhep05(2024)102
    [24]
    Caron-Huot S, Li Y Z, Parra-Martinez J, et al. Causality constraints on corrections to Einstein gravity. Journal of High Energy Physics, 2023, 2023: 122. doi: 10.1007/jhep05(2023)122
    [25]
    Caron-Huot S, Li Y Z, Parra-Martinez J, et al. Graviton partial waves and causality in higher dimensions. Physical Review D, 2023, 108: 026007. doi: 10.1103/physrevd.108.026007
    [26]
    Henriksson J, McPeak B, Russo F, et al. Bounding violations of the weak gravity conjecture. Journal of High Energy Physics, 2022, 2022: 184. doi: 10.1007/jhep08(2022)184
    [27]
    Chiang L-Y, Huang Y-T, Li W, et al. (Non)-projective bounds on gravitational EFT. arXiv: 2201. 07177, 2022.
    [28]
    Albert J, Rastelli L. Bootstrapping pions at large N. Journal of High Energy Physics, 2022, 2022: 151. doi: 10.1007/jhep08(2022)151
    [29]
    Carrillo González M, de Rham C, Jaitly S, et al. Positivity-causality competition: A road to ultimate EFT consistency constraints. Journal of High Energy Physics, 2024, 2024: 146. doi: 10.1007/jhep06(2024)146
    [30]
    Hong D Y, Wang Z H, Zhou S Y. Causality bounds on scalar-tensor EFTs. Journal of High Energy Physics, 2023, 2023: 135. doi: 10.1007/jhep10(2023)135
    [31]
    Li Y Z. Effective field theory bootstrap, large- N χPT and holographic QCD. Journal of High Energy Physics, 2024, 2024: 72. doi: 10.1007/jhep01(2024)072
    [32]
    Paulos M F, Penedones J, Toledo J, et al. The S-matrix bootstrap II: Two dimensional amplitudes. Journal of High Energy Physics, 2017, 2017: 143. doi: 10.1007/jhep11(2017)143
    [33]
    Paulos M F, Penedones J, Toledo J, et al. The S-matrix bootstrap. Part III: Higher dimensional amplitudes. Journal of High Energy Physics, 2019, 2019: 40. doi: 10.1007/jhep12(2019)040
    [34]
    He Y, Irrgang A, Kruczenski M. A note on the S-matrix bootstrap for the 2d O( N) bosonic model. Journal of High Energy Physics, 2018, 2018: 93. doi: 10.1007/jhep11(2018)093
    [35]
    He Y, Kruczenski M. S-matrix bootstrap in 3+1 dimensions: Regularization and dual convex problem. Journal of High Energy Physics, 2021, 2021: 125. doi: 10.1007/jhep08(2021)125
    [36]
    Karateev D, Kuhn S, Penedones J. Bootstrapping massive quantum field theories. Journal of High Energy Physics, 2020, 2020: 35. doi: 10.1007/jhep07(2020)035
    [37]
    Guerrieri A L, Penedones J, Vieira P. S-matrix bootstrap for effective field theories: Massless pions. Journal of High Energy Physics, 2021, 2021: 88. doi: 10.1007/jhep06(2021)088
    [38]
    Kruczenski M, Murali H. The R-matrix bootstrap for the 2d O( N) bosonic model with a boundary. Journal of High Energy Physics, 2021, 2021: 97. doi: 10.1007/jhep04(2021)097
    [39]
    Guerrieri A, Sever A. Rigorous bounds on the analytic S matrix . Physical Review Letters, 2021, 127: 251601. doi: 10.1103/physrevlett.127.251601
    [40]
    Guerrieri A, Penedones J, Vieira P. Where is string theory in the space of scattering amplitudes. Physical Review Letters, 2021, 127: 081601. doi: 10.1103/physrevlett.127.081601
    [41]
    Albert J, Rastelli L. Bootstrapping pions at large N. Part II: background gauge fields and the chiral anomaly. arXiv: 2307. 01246, 2023.
    [42]
    Acanfora F, Guerrieri A, Häring K, et al. Bounds on scattering of neutral Goldstones. Journal of High Energy Physics, 2024, 2024: 28. doi: 10.1007/jhep03(2024)028
    [43]
    Miró J E, Guerrieri A, Gumus M A. Extremal Higgs couplings. arXiv: 2311. 09283, 2023.
    [44]
    de Rham C, Kundu S, Reece M, et al. Snowmass white paper: UV constraints on IR physics. arXiv: 2203. 06805, 2022.
    [45]
    Zhang C, Zhou S Y. Positivity bounds on vector boson scattering at the LHC. Physical Review D, 2019, 100: 095003. doi: 10.1103/physrevd.100.095003
    [46]
    Bi Q, Zhang C, Zhou S Y. Positivity constraints on aQGC: Carving out the physical parameter space. Journal of High Energy Physics, 2019, 2019: 137. doi: 10.1007/jhep06(2019)137
    [47]
    Bellazzini B, Riva F. New phenomenological and theoretical perspective on anomalous ZZ and processes. Physical Review D, 2018, 98: 095021. doi: 10.1103/physrevd.98.095021
    [48]
    Remmen G N, Rodd N L. Consistency of the standard model effective field theory. Journal of High Energy Physics, 2019, 2019: 32. doi: 10.1007/jhep12(2019)032
    [49]
    Yamashita K, Zhang C, Zhou S Y. Elastic positivity vs extremal positivity bounds in SMEFT: A case study in transversal electroweak gauge-boson scatterings. Journal of High Energy Physics, 2021, 2021: 95. doi: 10.1007/jhep01(2021)095
    [50]
    Trott T. Causality, unitarity and symmetry in effective field theory. Journal of High Energy Physics, 2021, 2021: 143. doi: 10.1007/jhep07(2021)143
    [51]
    Remmen G N, Rodd N L. Flavor constraints from unitarity and analyticity. Physical Review Letters, 2020, 125: 081601. doi: 10.1103/physrevlett.125.081601
    [52]
    Remmen G N, Rodd N L. Signs, spin, SMEFT: Sum rules at dimension six. Physical Review D, 2022, 105: 036006. doi: 10.1103/physrevd.105.036006
    [53]
    Gu J, Wang L T. Sum rules in the standard model effective field theory from helicity amplitudes. Journal of High Energy Physics, 2021, 2021: 149. doi: 10.1007/jhep03(2021)149
    [54]
    Fuks B, Liu Y, Zhang C, et al. Positivity in electron-positron scattering: Testing the axiomatic quantum field theory principles and probing the existence of UV states. Chinese Physics C, 2021, 45: 023108. doi: 10.1088/1674-1137/abcd8c
    [55]
    Gu J, Wang L T, Zhang C. Unambiguously testing positivity at lepton colliders. Physical Review Letters, 2022, 129: 011805. doi: 10.1103/physrevlett.129.011805
    [56]
    Bonnefoy Q, Gendy E, Grojean C. Positivity bounds onminimal flavor violation. Journal of High Energy Physics, 2021, 2021: 115. doi: 10.1007/jhep04(2021)115
    [57]
    Davighi J, Melville S, You T. Natural selection rules: New positivity bounds for massive spinning particles. Journal of High Energy Physics, 2022, 2022: 167. doi: 10.1007/jhep02(2022)167
    [58]
    Chala M, Santiago J. Positivity bounds in the standard model effective field theory beyond tree level. Physical Review D, 2022, 105: L111901. doi: 10.1103/physrevd.105.l111901
    [59]
    Zhang C. SMEFTs living on the edge: Determining the UV theories from positivity and extremality. Journal of High Energy Physics, 2022, 2022: 96. doi: 10.1007/jhep12(2022)096
    [60]
    Ghosh D, Sharma R, Ullah F. Amplitude’s positivity vs. subluminality: Causality and unitarity constraints on dimension 6 & 8 gluonic operators in the SMEFT. Journal of High Energy Physics, 2023, 2023: 199. doi: 10.1007/jhep02(2023)199
    [61]
    Remmen G N, Rodd N L. Spinning sum rules for the dimension-six SMEFT. Journal of High Energy Physics, 2022, 2022: 30. doi: 10.1007/jhep09(2022)030
    [62]
    Li X, Zhou S. Origin of neutrino masses on the convex cone of positivity bounds. Physical Review D, 2023, 107: L031902. doi: 10.1103/physrevd.107.l031902
    [63]
    Li X, Mimasu K, Yamashita K, et al. Moments for positivity: Using Drell-Yan data to test positivity bounds and reverse-engineer new physics. Journal of High Energy Physics, 2022, 2022: 107. doi: 10.1007/jhep10(2022)107
    [64]
    Li X. Positivity bounds at one-loop level: The Higgs sector. Journal of High Energy Physics, 2023, 2023: 230. doi: 10.1007/jhep05(2023)230
    [65]
    Altmannshofer W, Gori S, Lehmann B V, et al. UV physics from IR features: New prospects from top flavor violation. Physical Review D, 2023, 107: 095025. doi: 10.1103/physrevd.107.095025
    [66]
    Davighi J, Melville S, Mimasu K, et al. Positivity and the electroweak hierarchy. Physical Review D, 2024, 109: 033009. doi: 10.1103/physrevd.109.033009
    [67]
    Ellis J, Mimasu K, Zampedri F. Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model. Journal of High Energy Physics, 2023, 2023: 51. doi: 10.1007/jhep10(2023)051
    [68]
    Chala M, Li X. Positivity restrictions on the mixing of dimension-eight SMEFT operators. Physical Review D, 2024, 109: 065015. doi: 10.1103/physrevd.109.065015
    [69]
    Gu J, Shu C. Probing positivity at the LHC with exclusive photon-fusion processes. Journal of High Energy Physics, 2024, 2024: 183. doi: 10.1007/jhep05(2024)183
    [70]
    Li H L, Ren Z, Shu J, et al. Complete set of dimension-eight operators in the standard model effective field theory. Physical Review D, 2021, 104: 015026. doi: 10.1103/physrevd.104.015026
    [71]
    Murphy C W. Dimension-8 operators in the Standard Model Effective Field Theory. Journal of High Energy Physics, 2020, 2020: 174. doi: 10.1007/jhep10(2020)174
    [72]
    Vecchi L. Causal vs. analytic constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2007, 2007: 54. doi: 10.1088/1126-6708/2007/11/054
    [73]
    Chen Q, Mimasu K, Wu T A, et al. Capping the positivity cone: Dimension-8 Higgs operators in the SMEFT. Journal of High Energy Physics, 2024, 2024: 180. doi: 10.1007/jhep03(2024)180
    [74]
    Froissart M. Asymptotic behavior and subtractions in the mandelstam representation. Physical Review, 1961, 123: 1053–1057. doi: 10.1103/physrev.123.1053
    [75]
    Martin A. Unitarity and high-energy behavior of scattering amplitudes. Physical Review, 1963, 129: 1432–1436. doi: 10.1103/physrev.129.1432
    [76]
    Landry W, Simmons-Duffin D. Scaling the semidefinite program solver SDPB. arXiv: 1909. 09745, 2019.
  • 加载中

Catalog

    Figure  1.  Positivity regions in the 2D subspaces of $ C_1, C_2 $, and $ C_3 $ by using linear and nonlinear unitarity conditions. Here, $ \displaystyle \bar{C_i}=C_i \varLambda^4 /(4\pi)^2 $. The orange and red regions are the results of the current paper using linear and nonlinear unitarity conditions respectively, while the blue region are from Ref. [73], which uses linear unitarity conditions but without using full Higgs symmetries. The orange and red regions are the same. We choose $ \displaystyle N=10,\; \ell_M=20 $ and use 42 null constraints.

    Figure  2.  Convergence of positivity (upper and lower) bounds with the number of null constraint. We choose $ \displaystyle N=10,\; \ell_M=20 $.

    Figure  3.  Convergence of positivity (upper and lower) bounds with the numerical truncations $ \ell_M $ and N. Here, $ \displaystyle \bar{C_i}=C_i \varLambda^4 /(4\pi)^2 $. 42 null constraints are used.

    [1]
    Adams A, Arkani-Hamed N, Dubovsky S, et al. Causality, analyticity and an IR obstruction to UV completion. Journal of High Energy Physics, 2006, 2006: 014. doi: 10.1088/1126-6708/2006/10/014
    [2]
    de Rham C, Melville S, Tolley A J, et al. Positivity bounds for scalar field theories. Physical Review D, 2017, 96: 081702. doi: 10.1103/physrevd.96.081702
    [3]
    de Rham C, Melville S, Tolley A J, et al. UV complete me: Positivity bounds for particles with spin. Journal of High Energy Physics, 2018, 2018: 11. doi: 10.1007/jhep03(2018)011
    [4]
    Arkani-Hamed N, Huang T C, Huang Y T. The EFT-hedron. Journal of High Energy Physics, 2021, 2021: 259. doi: 10.1007/jhep05(2021)259
    [5]
    Bellazzini B, Miró J E, Rattazzi R, et al. Positive moments for scattering amplitudes. Physical Review D, 2021, 104: 036006. doi: 10.1103/physrevd.104.036006
    [6]
    Tolley A J, Wang Z Y, Zhou S Y. New positivity bounds from full crossing symmetry. Journal of High Energy Physics, 2021, 2021: 255. doi: 10.1007/jhep05(2021)255
    [7]
    Caron-Huot S, Van Duong V. Extremal effective field theories. Journal of High Energy Physics, 2021, 2021: 280. doi: 10.1007/jhep05(2021)280
    [8]
    Chiang L Y, Huang Y T, Li W, et al. Into the EFThedron and UV constraints from IR consistency. Journal of High Energy Physics, 2022, 2021: 63. doi: 10.1007/jhep03(2022)063
    [9]
    Sinha A, Zahed A. Crossing symmetric dispersion relations in quantum field theories. Physical Review Letters, 2021, 126: 181601. doi: 10.1103/physrevlett.126.181601
    [10]
    Zhang C, Zhou S Y. Convex geometry perspective on the (standard model) effective field theory space. Physical Review Letters, 2020, 125: 201601. doi: 10.1103/physrevlett.125.201601
    [11]
    Li X, Xu H, Yang C, et al. Positivity in multifield effective field theories. Physical Review Letters, 2021, 127: 121601. doi: 10.1103/physrevlett.127.121601
    [12]
    Bellazzini B, Martucci L, Torre R. Symmetries, sum rules and constraints on effective field theories. Journal of High Energy Physics, 2014, 2014: 100. doi: 10.1007/jhep09(2014)100
    [13]
    Bellazzini B. Softness and amplitudes’ positivity for spinning particles. Journal of High Energy Physics, 2017, 2017: 34. doi: 10.1007/jhep02(2017)034
    [14]
    Bern Z, Kosmopoulos D, Zhiboedov A. Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude. Journal of Physics A: Mathematical and Theoretical, 2021, 54: 344002. doi: 10.1088/1751-8121/ac0e51
    [15]
    Alberte L, de Rham C, Jaitly S, et al. Positivity bounds and the massless spin-2 pole. Physical Review D, 2020, 102: 125023. doi: 10.1103/physrevd.102.125023
    [16]
    Tokuda J, Aoki K, Hirano S. Gravitational positivity bounds. Journal of High Energy Physics, 2020, 2020: 54. doi: 10.1007/jhep11(2020)054
    [17]
    Caron-Huot S, Mazáč D, Rastelli L, et al. Sharp boundaries for the swampland. Journal of High Energy Physics, 2021, 2021: 110. doi: 10.1007/jhep07(2021)110
    [18]
    Grall T, Melville S. Positivity bounds without boosts: New constraints on low energy effective field theories from the UV. Physical Review D, 2022, 105: L121301. doi: 10.1103/physrevd.105.l121301
    [19]
    Du Z Z, Zhang C, Zhou S Y. Triple crossing positivity bounds for multi-field theories. Journal of High Energy Physics, 2021, 2021: 115. doi: 10.1007/jhep12(2021)115
    [20]
    Alberte L, de Rham C, Jaitly S, et al. Reverse bootstrapping: IR lessons for UV physics. Physical Review Letters, 2022, 128: 051602. doi: 10.1103/physrevlett.128.051602
    [21]
    Bellazzini B, Riembau M, Riva F. IR side of positivity bounds. Physical Review D, 2022, 106: 105008. doi: 10.1103/physrevd.106.105008
    [22]
    Dutta Chowdhury S, Ghosh K, Haldar P, et al. Crossing symmetric spinning S-matrix bootstrap: EFT bounds. SciPost Physics, 2022, 13: 51. doi: 10.21468/scipostphys.13.3.051
    [23]
    Chiang L Y, Huang Y T, Rodina L, et al. De-projecting the EFThedron. Journal of High Energy Physics, 2024, 2024: 102. doi: 10.1007/jhep05(2024)102
    [24]
    Caron-Huot S, Li Y Z, Parra-Martinez J, et al. Causality constraints on corrections to Einstein gravity. Journal of High Energy Physics, 2023, 2023: 122. doi: 10.1007/jhep05(2023)122
    [25]
    Caron-Huot S, Li Y Z, Parra-Martinez J, et al. Graviton partial waves and causality in higher dimensions. Physical Review D, 2023, 108: 026007. doi: 10.1103/physrevd.108.026007
    [26]
    Henriksson J, McPeak B, Russo F, et al. Bounding violations of the weak gravity conjecture. Journal of High Energy Physics, 2022, 2022: 184. doi: 10.1007/jhep08(2022)184
    [27]
    Chiang L-Y, Huang Y-T, Li W, et al. (Non)-projective bounds on gravitational EFT. arXiv: 2201. 07177, 2022.
    [28]
    Albert J, Rastelli L. Bootstrapping pions at large N. Journal of High Energy Physics, 2022, 2022: 151. doi: 10.1007/jhep08(2022)151
    [29]
    Carrillo González M, de Rham C, Jaitly S, et al. Positivity-causality competition: A road to ultimate EFT consistency constraints. Journal of High Energy Physics, 2024, 2024: 146. doi: 10.1007/jhep06(2024)146
    [30]
    Hong D Y, Wang Z H, Zhou S Y. Causality bounds on scalar-tensor EFTs. Journal of High Energy Physics, 2023, 2023: 135. doi: 10.1007/jhep10(2023)135
    [31]
    Li Y Z. Effective field theory bootstrap, large- N χPT and holographic QCD. Journal of High Energy Physics, 2024, 2024: 72. doi: 10.1007/jhep01(2024)072
    [32]
    Paulos M F, Penedones J, Toledo J, et al. The S-matrix bootstrap II: Two dimensional amplitudes. Journal of High Energy Physics, 2017, 2017: 143. doi: 10.1007/jhep11(2017)143
    [33]
    Paulos M F, Penedones J, Toledo J, et al. The S-matrix bootstrap. Part III: Higher dimensional amplitudes. Journal of High Energy Physics, 2019, 2019: 40. doi: 10.1007/jhep12(2019)040
    [34]
    He Y, Irrgang A, Kruczenski M. A note on the S-matrix bootstrap for the 2d O( N) bosonic model. Journal of High Energy Physics, 2018, 2018: 93. doi: 10.1007/jhep11(2018)093
    [35]
    He Y, Kruczenski M. S-matrix bootstrap in 3+1 dimensions: Regularization and dual convex problem. Journal of High Energy Physics, 2021, 2021: 125. doi: 10.1007/jhep08(2021)125
    [36]
    Karateev D, Kuhn S, Penedones J. Bootstrapping massive quantum field theories. Journal of High Energy Physics, 2020, 2020: 35. doi: 10.1007/jhep07(2020)035
    [37]
    Guerrieri A L, Penedones J, Vieira P. S-matrix bootstrap for effective field theories: Massless pions. Journal of High Energy Physics, 2021, 2021: 88. doi: 10.1007/jhep06(2021)088
    [38]
    Kruczenski M, Murali H. The R-matrix bootstrap for the 2d O( N) bosonic model with a boundary. Journal of High Energy Physics, 2021, 2021: 97. doi: 10.1007/jhep04(2021)097
    [39]
    Guerrieri A, Sever A. Rigorous bounds on the analytic S matrix . Physical Review Letters, 2021, 127: 251601. doi: 10.1103/physrevlett.127.251601
    [40]
    Guerrieri A, Penedones J, Vieira P. Where is string theory in the space of scattering amplitudes. Physical Review Letters, 2021, 127: 081601. doi: 10.1103/physrevlett.127.081601
    [41]
    Albert J, Rastelli L. Bootstrapping pions at large N. Part II: background gauge fields and the chiral anomaly. arXiv: 2307. 01246, 2023.
    [42]
    Acanfora F, Guerrieri A, Häring K, et al. Bounds on scattering of neutral Goldstones. Journal of High Energy Physics, 2024, 2024: 28. doi: 10.1007/jhep03(2024)028
    [43]
    Miró J E, Guerrieri A, Gumus M A. Extremal Higgs couplings. arXiv: 2311. 09283, 2023.
    [44]
    de Rham C, Kundu S, Reece M, et al. Snowmass white paper: UV constraints on IR physics. arXiv: 2203. 06805, 2022.
    [45]
    Zhang C, Zhou S Y. Positivity bounds on vector boson scattering at the LHC. Physical Review D, 2019, 100: 095003. doi: 10.1103/physrevd.100.095003
    [46]
    Bi Q, Zhang C, Zhou S Y. Positivity constraints on aQGC: Carving out the physical parameter space. Journal of High Energy Physics, 2019, 2019: 137. doi: 10.1007/jhep06(2019)137
    [47]
    Bellazzini B, Riva F. New phenomenological and theoretical perspective on anomalous ZZ and processes. Physical Review D, 2018, 98: 095021. doi: 10.1103/physrevd.98.095021
    [48]
    Remmen G N, Rodd N L. Consistency of the standard model effective field theory. Journal of High Energy Physics, 2019, 2019: 32. doi: 10.1007/jhep12(2019)032
    [49]
    Yamashita K, Zhang C, Zhou S Y. Elastic positivity vs extremal positivity bounds in SMEFT: A case study in transversal electroweak gauge-boson scatterings. Journal of High Energy Physics, 2021, 2021: 95. doi: 10.1007/jhep01(2021)095
    [50]
    Trott T. Causality, unitarity and symmetry in effective field theory. Journal of High Energy Physics, 2021, 2021: 143. doi: 10.1007/jhep07(2021)143
    [51]
    Remmen G N, Rodd N L. Flavor constraints from unitarity and analyticity. Physical Review Letters, 2020, 125: 081601. doi: 10.1103/physrevlett.125.081601
    [52]
    Remmen G N, Rodd N L. Signs, spin, SMEFT: Sum rules at dimension six. Physical Review D, 2022, 105: 036006. doi: 10.1103/physrevd.105.036006
    [53]
    Gu J, Wang L T. Sum rules in the standard model effective field theory from helicity amplitudes. Journal of High Energy Physics, 2021, 2021: 149. doi: 10.1007/jhep03(2021)149
    [54]
    Fuks B, Liu Y, Zhang C, et al. Positivity in electron-positron scattering: Testing the axiomatic quantum field theory principles and probing the existence of UV states. Chinese Physics C, 2021, 45: 023108. doi: 10.1088/1674-1137/abcd8c
    [55]
    Gu J, Wang L T, Zhang C. Unambiguously testing positivity at lepton colliders. Physical Review Letters, 2022, 129: 011805. doi: 10.1103/physrevlett.129.011805
    [56]
    Bonnefoy Q, Gendy E, Grojean C. Positivity bounds onminimal flavor violation. Journal of High Energy Physics, 2021, 2021: 115. doi: 10.1007/jhep04(2021)115
    [57]
    Davighi J, Melville S, You T. Natural selection rules: New positivity bounds for massive spinning particles. Journal of High Energy Physics, 2022, 2022: 167. doi: 10.1007/jhep02(2022)167
    [58]
    Chala M, Santiago J. Positivity bounds in the standard model effective field theory beyond tree level. Physical Review D, 2022, 105: L111901. doi: 10.1103/physrevd.105.l111901
    [59]
    Zhang C. SMEFTs living on the edge: Determining the UV theories from positivity and extremality. Journal of High Energy Physics, 2022, 2022: 96. doi: 10.1007/jhep12(2022)096
    [60]
    Ghosh D, Sharma R, Ullah F. Amplitude’s positivity vs. subluminality: Causality and unitarity constraints on dimension 6 & 8 gluonic operators in the SMEFT. Journal of High Energy Physics, 2023, 2023: 199. doi: 10.1007/jhep02(2023)199
    [61]
    Remmen G N, Rodd N L. Spinning sum rules for the dimension-six SMEFT. Journal of High Energy Physics, 2022, 2022: 30. doi: 10.1007/jhep09(2022)030
    [62]
    Li X, Zhou S. Origin of neutrino masses on the convex cone of positivity bounds. Physical Review D, 2023, 107: L031902. doi: 10.1103/physrevd.107.l031902
    [63]
    Li X, Mimasu K, Yamashita K, et al. Moments for positivity: Using Drell-Yan data to test positivity bounds and reverse-engineer new physics. Journal of High Energy Physics, 2022, 2022: 107. doi: 10.1007/jhep10(2022)107
    [64]
    Li X. Positivity bounds at one-loop level: The Higgs sector. Journal of High Energy Physics, 2023, 2023: 230. doi: 10.1007/jhep05(2023)230
    [65]
    Altmannshofer W, Gori S, Lehmann B V, et al. UV physics from IR features: New prospects from top flavor violation. Physical Review D, 2023, 107: 095025. doi: 10.1103/physrevd.107.095025
    [66]
    Davighi J, Melville S, Mimasu K, et al. Positivity and the electroweak hierarchy. Physical Review D, 2024, 109: 033009. doi: 10.1103/physrevd.109.033009
    [67]
    Ellis J, Mimasu K, Zampedri F. Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model. Journal of High Energy Physics, 2023, 2023: 51. doi: 10.1007/jhep10(2023)051
    [68]
    Chala M, Li X. Positivity restrictions on the mixing of dimension-eight SMEFT operators. Physical Review D, 2024, 109: 065015. doi: 10.1103/physrevd.109.065015
    [69]
    Gu J, Shu C. Probing positivity at the LHC with exclusive photon-fusion processes. Journal of High Energy Physics, 2024, 2024: 183. doi: 10.1007/jhep05(2024)183
    [70]
    Li H L, Ren Z, Shu J, et al. Complete set of dimension-eight operators in the standard model effective field theory. Physical Review D, 2021, 104: 015026. doi: 10.1103/physrevd.104.015026
    [71]
    Murphy C W. Dimension-8 operators in the Standard Model Effective Field Theory. Journal of High Energy Physics, 2020, 2020: 174. doi: 10.1007/jhep10(2020)174
    [72]
    Vecchi L. Causal vs. analytic constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2007, 2007: 54. doi: 10.1088/1126-6708/2007/11/054
    [73]
    Chen Q, Mimasu K, Wu T A, et al. Capping the positivity cone: Dimension-8 Higgs operators in the SMEFT. Journal of High Energy Physics, 2024, 2024: 180. doi: 10.1007/jhep03(2024)180
    [74]
    Froissart M. Asymptotic behavior and subtractions in the mandelstam representation. Physical Review, 1961, 123: 1053–1057. doi: 10.1103/physrev.123.1053
    [75]
    Martin A. Unitarity and high-energy behavior of scattering amplitudes. Physical Review, 1963, 129: 1432–1436. doi: 10.1103/physrev.129.1432
    [76]
    Landry W, Simmons-Duffin D. Scaling the semidefinite program solver SDPB. arXiv: 1909. 09745, 2019.

    Article Metrics

    Article views (131) PDF downloads(429)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return