[1] |
Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press, 1994.
|
[2] |
Wu J, Tse C K, Lau F C M, et al. Analysis of communication network performance from a complex network perspective. IEEE Transactions on Circuits and Systems, 2013, 60: 3303–3316. doi: 10.1109/TCSI.2013.2264697
|
[3] |
Newman M E J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 404–409. doi: 10.1073/pnas.98.2.404
|
[4] |
Alm E, Arkin A P. Biological networks. Current Opinion in Structural Biology, 2003, 13: 193–202. doi: 10.1016/S0959-440X(03)00031-9
|
[5] |
Ozik J, Hunt B R, Ott E. Growing networks with geographical attachment preference: Emergence of small worlds. Physical Review E, 2004, 69: 026108. doi: 10.1103/PhysRevE.69.026108
|
[6] |
Feng Q, Wang Y, Hu Z. Small-world effect in geographical attachment networks. Probability in the Engineering and Informational Sciences, 2021, 35: 276–296. doi: 10.1017/S0269964819000342
|
[7] |
Hayashi Y. A review of recent studies of geographical scale-free networks. Information and Media Technologies, 2006, 1: 1136–1145. doi: 10.11185/imt.1.1136
|
[8] |
Zhang Z, Rong L, Comellas F. Evolving small-world networks with geographical attachment preference. Journal of Physics A: Mathematical and General, 2006, 39: 3253. doi: 10.1088/0305-4470/39/13/005
|
[9] |
Zhang Z, Rong L, Guo C. A deterministic small-world network created by edge iterations. Physica A: Statistical Mechanics and its Applications, 2006, 363: 567–572. doi: 10.1016/j.physa.2005.08.020
|
[10] |
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512. doi: 10.1126/science.286.5439.509
|
[11] |
Kolossváry I, Komjáthy J, Vágó L. Degrees and distances in random and evolving Apollonian networks. Advances in Applied Probability, 2016, 48: 865–902. doi: 10.1017/apr.2016.32
|
[12] |
Zhou T, Yan G, Wang B. Maximal planar networks with large clustering coefficient and power-law degree distribution. Physical Review E, 2005, 71: 046141. doi: 10.1103/PhysRevE.71.046141
|
[13] |
Andrade Jr J S, Herrmann H J, Andrade R F, et al. Apollonian networks: simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Physical Review Letters, 2005, 94: 018702. doi: 10.1103/PhysRevLett.94.018702
|
[14] |
Zhang Z, Rong L, Zhou S. Evolving Apollonian networks with small-world scale-free topologies. Physical Review E, 2006, 74: 046105. doi: 10.1103/PhysRevE.74.046105
|
[15] |
Abdullah M A, Bode M, Fountoulakis N. Typical distances in a geometric model for complex networks. arXiv: 1506.07811, 2015
|
[16] |
Dereich S, Mönch C, Mörters P. Typical distances in ultrasmall random networks. Advances in Applied Probability, 2012, 44: 583–601. doi: 10.1239/aap/1339878725
|
[17] |
Bhamidi S, van der Hofstad R, Hooghiemstra G. First passage percolation on the Erdös–Rényi random graph. Combinatorics, Probability and Computing, 2011, 20: 683–707. doi: 10.1017/S096354831100023X
|
[18] |
Bhamidi S, van der Hofstad R. Weak disorder asymptotics in the stochastic mean-field model of distance. Advances in Applied Probability, 2012, 22: 29–69. doi: 10.1214/10-AAP753
|
[19] |
van der Hofstad R, Hooghiemstra G, van Mieghem P. The flooding time in random graphs. Extremes, 2002, 5: 111–129. doi: 10.1023/A:1022175620150
|
[20] |
Camargo D, Popov S. Total flooding time and rumor propagation on graphs. Journal of Statistical Physics, 2017, 166: 1558–1571. doi: 10.1007/s10955-017-1731-0
|
[21] |
Amini H, Draief M, Lelarge M. Flooding in weighted sparse random graphs. SIAM Journal on Discrete Mathematics, 2013, 27: 1–26. doi: 10.1137/120865021
|
[22] |
Mountford T, Saliba J. Flooding and diameter in general weighted random graphs. Journal of Applied Probability, 2020, 57: 956–980. doi: 10.1017/jpr.2020.45
|
[23] |
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972.
|
[24] |
Bühler W J. Generations and degree of relationship in supercritical Markov branching processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1971, 18: 141–152. doi: 10.1007/BF00569184
|
[25] |
Feller W. An Introduction to Probability Theory and Its Applications, Vol. 1. 3rd Edition. New York: Wiley, 2008.
|
Figure
3.
(a) is the subnetwork
[1] |
Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press, 1994.
|
[2] |
Wu J, Tse C K, Lau F C M, et al. Analysis of communication network performance from a complex network perspective. IEEE Transactions on Circuits and Systems, 2013, 60: 3303–3316. doi: 10.1109/TCSI.2013.2264697
|
[3] |
Newman M E J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 404–409. doi: 10.1073/pnas.98.2.404
|
[4] |
Alm E, Arkin A P. Biological networks. Current Opinion in Structural Biology, 2003, 13: 193–202. doi: 10.1016/S0959-440X(03)00031-9
|
[5] |
Ozik J, Hunt B R, Ott E. Growing networks with geographical attachment preference: Emergence of small worlds. Physical Review E, 2004, 69: 026108. doi: 10.1103/PhysRevE.69.026108
|
[6] |
Feng Q, Wang Y, Hu Z. Small-world effect in geographical attachment networks. Probability in the Engineering and Informational Sciences, 2021, 35: 276–296. doi: 10.1017/S0269964819000342
|
[7] |
Hayashi Y. A review of recent studies of geographical scale-free networks. Information and Media Technologies, 2006, 1: 1136–1145. doi: 10.11185/imt.1.1136
|
[8] |
Zhang Z, Rong L, Comellas F. Evolving small-world networks with geographical attachment preference. Journal of Physics A: Mathematical and General, 2006, 39: 3253. doi: 10.1088/0305-4470/39/13/005
|
[9] |
Zhang Z, Rong L, Guo C. A deterministic small-world network created by edge iterations. Physica A: Statistical Mechanics and its Applications, 2006, 363: 567–572. doi: 10.1016/j.physa.2005.08.020
|
[10] |
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512. doi: 10.1126/science.286.5439.509
|
[11] |
Kolossváry I, Komjáthy J, Vágó L. Degrees and distances in random and evolving Apollonian networks. Advances in Applied Probability, 2016, 48: 865–902. doi: 10.1017/apr.2016.32
|
[12] |
Zhou T, Yan G, Wang B. Maximal planar networks with large clustering coefficient and power-law degree distribution. Physical Review E, 2005, 71: 046141. doi: 10.1103/PhysRevE.71.046141
|
[13] |
Andrade Jr J S, Herrmann H J, Andrade R F, et al. Apollonian networks: simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs. Physical Review Letters, 2005, 94: 018702. doi: 10.1103/PhysRevLett.94.018702
|
[14] |
Zhang Z, Rong L, Zhou S. Evolving Apollonian networks with small-world scale-free topologies. Physical Review E, 2006, 74: 046105. doi: 10.1103/PhysRevE.74.046105
|
[15] |
Abdullah M A, Bode M, Fountoulakis N. Typical distances in a geometric model for complex networks. arXiv: 1506.07811, 2015
|
[16] |
Dereich S, Mönch C, Mörters P. Typical distances in ultrasmall random networks. Advances in Applied Probability, 2012, 44: 583–601. doi: 10.1239/aap/1339878725
|
[17] |
Bhamidi S, van der Hofstad R, Hooghiemstra G. First passage percolation on the Erdös–Rényi random graph. Combinatorics, Probability and Computing, 2011, 20: 683–707. doi: 10.1017/S096354831100023X
|
[18] |
Bhamidi S, van der Hofstad R. Weak disorder asymptotics in the stochastic mean-field model of distance. Advances in Applied Probability, 2012, 22: 29–69. doi: 10.1214/10-AAP753
|
[19] |
van der Hofstad R, Hooghiemstra G, van Mieghem P. The flooding time in random graphs. Extremes, 2002, 5: 111–129. doi: 10.1023/A:1022175620150
|
[20] |
Camargo D, Popov S. Total flooding time and rumor propagation on graphs. Journal of Statistical Physics, 2017, 166: 1558–1571. doi: 10.1007/s10955-017-1731-0
|
[21] |
Amini H, Draief M, Lelarge M. Flooding in weighted sparse random graphs. SIAM Journal on Discrete Mathematics, 2013, 27: 1–26. doi: 10.1137/120865021
|
[22] |
Mountford T, Saliba J. Flooding and diameter in general weighted random graphs. Journal of Applied Probability, 2020, 57: 956–980. doi: 10.1017/jpr.2020.45
|
[23] |
Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972.
|
[24] |
Bühler W J. Generations and degree of relationship in supercritical Markov branching processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1971, 18: 141–152. doi: 10.1007/BF00569184
|
[25] |
Feller W. An Introduction to Probability Theory and Its Applications, Vol. 1. 3rd Edition. New York: Wiley, 2008.
|