ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Engineering & Materials 08 June 2023

Synthesis, properties, and applications of topological quantum materials

Cite this:
https://doi.org/10.52396/JUSTC-2023-0024
More Information
  • Author Bio:

    Junjie Wu is currently a postgraduate student at the University of Science and Technology of China. His research focuses on the synthesis and properties of topological quantum materials

    Bin Xiang is a Professor at the University of Science and Technology of China. He received his Ph.D. degree from Peking University in 2005. His research field includes the synthesis, characterization and application of two-dimensional quantum functional materials

  • Corresponding author: E-mail: binxiang@ustc.edu.cn
  • Received Date: 20 February 2023
  • Accepted Date: 11 May 2023
  • Available Online: 08 June 2023
  • Since topological quantum materials may possess interesting properties and promote the application of electronic devices, the search for new topological quantum materials has become the focus and frontier of condensed matter physics. Currently, it has been found that there are two interesting systems in topological quantum materials: topological superconducting materials and topological magnetic materials. Although research on these materials has made rapid progress, a systematic review of their synthesis, properties, and applications, particularly their synthesis, is still lacking. In this paper, we emphasize the experimental preparation of two typical topological quantum materials and then briefly introduce their potential physical properties and applications. Finally, we provide insights into current and future issues in the study of topological quantum material systems.
    The typical synthesis of topological quantum materials.
    Since topological quantum materials may possess interesting properties and promote the application of electronic devices, the search for new topological quantum materials has become the focus and frontier of condensed matter physics. Currently, it has been found that there are two interesting systems in topological quantum materials: topological superconducting materials and topological magnetic materials. Although research on these materials has made rapid progress, a systematic review of their synthesis, properties, and applications, particularly their synthesis, is still lacking. In this paper, we emphasize the experimental preparation of two typical topological quantum materials and then briefly introduce their potential physical properties and applications. Finally, we provide insights into current and future issues in the study of topological quantum material systems.
    • The review presents the synthesis of two typical topological quantum materials.
    • Topological magnets and topological superconductors with their potential physical properties and applications are discussed.
    • Research related to the study of topological quantum material systems is of great importance.

  • loading
  • [1]
    Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, 45: 494–497. doi: 10.1103/PhysRevLett.45.494
    [2]
    Lv B Q, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals. Reviews of Modern Physics, 2021, 93: 025002. doi: 10.1103/RevModPhys.93.025002
    [3]
    Sato M, Ando Y. Topological superconductors: A review. Reports on Progress in Physics, 2017, 80: 076501. doi: 10.1088/1361-6633/aa6ac7
    [4]
    Read N, Green D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Physical Review B, 2000, 61: 10267–10297. doi: 10.1103/PhysRevB.61.10267
    [5]
    Kitaev A Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 2001, 44: 131. doi: 10.1070/1063-7869/44/10S/S29
    [6]
    Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 2008, 80: 1083–1159. doi: 10.1103/RevModPhys.80.1083
    [7]
    Xu Y, Elcoro L, Song Z D, et al. High-throughput calculations of magnetic topological materials. Nature, 2020, 586: 702–707. doi: 10.1038/s41586-020-2837-0
    [8]
    Morali N, Batabyal R, Nag P K, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science, 2019, 365: 1286–1291. doi: 10.1126/science.aav2334
    [9]
    Noky J, Zhang Y, Gooth J, et al. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. npj Computational Materials, 2020, 6: 77. doi: 10.1038/s41524-020-0342-5
    [10]
    Sharma M M, Sharma P, Karn N K, et al. Comprehensive review on topological superconducting materials and interfaces. Superconductor Science and Technology, 2022, 35: 083003. doi: 10.1088/1361-6668/ac6987
    [11]
    Bernevig B A, Felser C, Beidenkopf H. Progress and prospects in magnetic topological materials. Nature, 2022, 603: 41–51. doi: 10.1038/s41586-021-04105-x
    [12]
    Reale F, Sharda K, Mattevi C. From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3: 11–22. doi: 10.1016/j.apmt.2015.12.003
    [13]
    Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small, 2019, 15: 1804404. doi: 10.1002/smll.201804404
    [14]
    Das S, Kim M, Lee J W, et al. Synthesis, properties, and applications of 2-D materials: A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 2014, 39: 231–252. doi: 10.1080/10408436.2013.836075
    [15]
    Özel F, Arkan E, Coskun H, et al. Refractory-metal-based chalcogenides for energy. Advanced Functional Materials, 2022, 32: 2207705. doi: 10.1002/adfm.202207705
    [16]
    Binnewies M, Glaum R, Schmidt M, et al. Chemical vapor transport reactions—A historical review. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639: 219–229. doi: https://doi.org/10.1002/zaac.201300048
    [17]
    Chang T R, Chen P J, Bian G, et al. Topological Dirac surface states and superconducting pairing correlations in PbTaSe2. Physical Review B, 2016, 93: 245130. doi: 10.1103/PhysRevB.93.245130
    [18]
    Bian G, Chang T R, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nature Communications, 2016, 7 (1): 10556. doi: 10.1038/ncomms10556
    [19]
    Chen W, Liu L, Yang W, et al. Evidence of topological nodal lines and surface states in the centrosymmetric superconductor SnTaS2. Physical Review B, 2021, 103: 035133. doi: 10.1103/PhysRevB.103.035133
    [20]
    Pandey K, Mondal D, Villanova J W, et al. Magnetic topological semimetal phase with electronic correlation enhancement in SmSbTe. Advanced Quantum Technologies, 2021, 4 (10): 2100063. doi: 10.1002/qute.202100063
    [21]
    Hu C, Gao A, Berggren B S, et al. Growth, characterization and Chern insulator state in MnBi2Te4 via the chemical vapor transport method. Physical Review Materials, 2021, 5 (12): 124206. doi: 10.1103/PhysRevMaterials.5.124206
    [22]
    Zhang H, Xu C Q, Ke X. Topological Nernst effect, anomalous Nernst effect, and anomalous thermal Hall effect in the Dirac semimetal Fe3Sn2. Physical Review B, 2021, 103: L201101. doi: 10.1103/PhysRevB.103.L201101
    [23]
    Berry T, Ng N, McQueen T M. Single crystal growth tricks and treats. arXiv: 2209.09370, 2022
    [24]
    Xi M, Chen F, Gong C, et al. Relationship between antisite defects, magnetism, and band topology in MnSb2Te4 crystals with TC ≈ 40 K. The Journal of Physical Chemistry Letters, 2022, 13: 10897–10904. doi: 10.1021/acs.jpclett.2c02775
    [25]
    Murakami T, Nambu Y, Koretsune T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state. Physical Review B, 2019, 100: 195103. doi: 10.1103/PhysRevB.100.195103
    [26]
    Liu S B, Yuan J, Huh S, et al. Electronic phase diagram of iron chalcogenide superconductors FeSe1-xSx and FeSe1-yTey. arXiv: 2009.13286, 2020.
    [27]
    Wang Z, Zhang P, Xu G, et al. Topological nature of the FeSe0.5Te0.5 superconductor. Physical Review B, 2015, 92: 115119. doi: 10.1103/PhysRevB.92.115119
    [28]
    Yang Y, Feng S Q, Xiang Y Y, et al. Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS. Chinese Physics B, 2017, 26: 127401. doi: 10.1088/1674-1056/26/12/127401
    [29]
    Adam M L, Liu Z, Moses O A, et al. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Research, 2021, 14: 2613–2619. doi: 10.1007/s12274-020-3262-2
    [30]
    Li M, Fang Y, Pei C, et al. Phonon softening and higher-order anharmonic effect in the superconducting topological insulator SrxBi2Se3. Journal of Physics: Condensed Matter, 2020, 32: 385701. doi: 10.1088/1361-648X/ab9344
    [31]
    Liu Z, Yao X, Shao J, et al. Superconductivity with topological surface state in SrxBi2Se3. Journal of the American Chemical Society, 2015, 137 (33): 10512–10515. doi: https://doi.org/10.1021/jacs.5b06815
    [32]
    Du G, Shao J, Yang X, et al. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3. Nature Communications, 2017, 8 (1): 14466. doi: 10.1038/ncomms14466
    [33]
    Han C Q, Li H, Chen W J, et al. Electronic structure of a superconducting topological insulator Sr-doped Bi2Se3. Applied Physics Letters, 2015, 107: 171602. doi: 10.1063/1.4934590
    [34]
    Hor Y S, Williams A J, Checkelsky J G, et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Physical Review Letters, 2010, 104: 057001. doi: 10.1103/PhysRevLett.104.057001
    [35]
    Kriener M, Segawa K, Ren Z, et al. Bulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3. Physical Review Letters, 2011, 106 (12): 127004. doi: 10.1103/PhysRevLett.106.127004
    [36]
    Wray L A, Xu S-Y, Xia Y, et al. Observation of topological order in a superconducting doped topological insulator. Nature Physics, 2010, 6 (11): 855–859. doi: 10.1038/nphys1762
    [37]
    Kriener M, Segawa K, Ren Z, et al. , Electrochemical synthesis and superconducting phase diagram of CuxBi2Se3. Physical Review B, 2011, 84 (5): 054513. doi: 10.1103/PhysRevB.84.054513
    [38]
    Trang C X, Wang Z, Takane D, et al. Fermiology of possible topological superconductor Tl0.5Bi2Te3 derived from hole-doped topological insulator. Physical Review B, 2016, 93 (24): 241103. doi: 10.1103/PhysRevB.93.241103
    [39]
    Venderbos J W F, Kozii V, Fu L. Identification of nematic superconductivity from the upper critical field. Physical Review B, 2016, 94: 094522. doi: 10.1103/PhysRevB.94.094522
    [40]
    Qiu Y S, Sanders K N, Dai J X, et al. Time reversal symmetry breaking superconductivity in topological materials. arXiv: 1512.03519, 2015.
    [41]
    Tanaka M, Fujishiro Y, Mogi M, et al. Topological kagome magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect. Nano Letters, 2020, 20 (10): 7476–7481. doi: 10.1021/acs.nanolett.0c02962
    [42]
    Kanagaraj M, Ning J, He L. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study. Reviews in Physics, 2022, 8: 100072. doi: 10.1016/j.revip.2022.100072
    [43]
    Ding L, Koo J, Xu L, et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Physical Review X, 2019, 9 (4): 041061. doi: 10.1103/PhysRevX.9.041061
    [44]
    Sasaki S, Ren Z, Taskin A A, et al. Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor. Physical Review Letters, 2012, 109 (21): 217004. doi: 10.1103/PhysRevLett.109.217004
    [45]
    Kanatzidis M G, Pöttgen R, Jeitschko W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angewandte Chemie International Edition, 2005, 44: 6996–7023. doi: 10.1002/anie.200462170
    [46]
    Yan J Q, Sales B C, Susner M A, et al. Flux growth in a horizontal configuration: An analog to vapor transport growth. Physical Review Materials, 2017, 1: 023402. doi: 10.1103/PhysRevMaterials.1.023402
    [47]
    Guo L, Chen T W, Chen C, et al. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Applied Electronic Materials, 2019, 1: 869–876. doi: 10.1021/acsaelm.9b00061
    [48]
    Sales B C, Yan J, Meier W R, et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Physical Review Materials, 2019, 3: 114203. doi: 10.1103/PhysRevMaterials.3.114203
    [49]
    Shrestha K, Chapai R, Pokharel B K, et al. Nontrivial Fermi surface topology of the kagome superconductor CsV3Sb5 probed by de Haas-van alphen oscillations. Physical Review B, 2022, 105: 024508. doi: 10.1103/PhysRevB.105.024508
    [50]
    May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Physical Review B, 2016, 93: 014411. doi: 10.1103/PhysRevB.93.014411
    [51]
    Kang M, Fang S, Ye L, et al. Topological flat bands in frustrated kagome lattice CoSn. Nature Communications, 2020, 11: 4004. doi: 10.1038/s41467-020-17465-1
    [52]
    Liu Z, Li M, Wang Q, et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nature Communications, 2020, 11: 4002. doi: 10.1038/s41467-020-17462-4
    [53]
    Meier W R, Du M H, Okamoto S, et al. Flat bands in the CoSn-type compounds. Physical Review B, 2020, 102: 075148. doi: 10.1103/PhysRevB.102.075148
    [54]
    Zhao H, Li H, Ortiz B R, et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature, 2021, 599: 216–221. doi: 10.1038/s41586-021-03946-w
    [55]
    Zhao C C, Wang L X, Xia W, et al., Nodal superconductivity and superconducting dome in the topological Kagome metal CsV3Sb5. arXiv:2102.08356, 2021.
    [56]
    Kang M, Fang S, Kim J K, et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nature Physics, 2022, 18: 301–308. doi: 10.1038/s41567-021-01451-5
    [57]
    Gupta R, Das D, Mielke III C H, et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Materials, 2022, 7: 49. doi: 10.1038/s41535-022-00453-7
    [58]
    Ge J, Wang P Y, Xing Y, et al. Discovery of charge-4e and charge-6e superconductivity in kagome superconductor CsV3Sb5. arXiv: 2201.10352, 2022.
    [59]
    Xiang Y, Li Q, Li Y, et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nature Communications, 2021, 12 (1): 6727. doi: 10.1038/s41467-021-27084-z
    [60]
    Jiang Y X, Yin J X, Denner M M, et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nature Materials, 2021, 20 (10): 1353–1357. doi: 10.1038/s41563-021-01034-y
    [61]
    Li H, Zhao H, Ortiz B R, et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nature Physics, 2022, 18 (3): 265–270. doi: 10.1038/s41567-021-01479-7
    [62]
    Jiang K, Wu T, Yin J X, et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). National Science Review, 2023, 10 (2): nwac199. doi: 10.1093/nsr/nwac199
    [63]
    Xing Y, Wang H, Li C K, et al. Superconductivity in topologically nontrivial material Au2Pb. npj Quantum Materials, 2016, 1: 16005. doi: 10.1038/npjquantmats.2016.5
    [64]
    Schoop L M, Xie L S, Chen R, et al. Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z2 topology for the superconductor. Physical Review B, 2015, 91: 214517. doi: 10.1103/PhysRevB.91.214517
    [65]
    Xing Y, Shao Z, Ge J, et al. Surface superconductivity in the type II Weyl semimetal TaIrTe4. National Science Review, 2020, 7 (3): 579–587. doi: 10.1093/nsr/nwz204
    [66]
    Yu J, Li J, Zhang W, et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science, 2015, 6 (12): 6705–6716. doi: 10.1039/C5SC01941A
    [67]
    Saitoh T, Muramatsu S, Shimada T, et al. Optical and electrical properties of amorphous silicon films prepared by photochemical vapor deposition. Applied Physics Letters, 1983, 42 (8): 678–679. doi: 10.1063/1.94069
    [68]
    Zhou S, Wang R, Han J, et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and Raman scattering investigation. Advanced Functional Materials, 2019, 29 (3): 1805880. doi: 10.1002/adfm.201805880
    [69]
    Yi K, Liu D, Chen X, et al. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Accounts of Chemical Research, 2021, 54 (4): 1011–1022. doi: 10.1021/acs.accounts.0c00757
    [70]
    Lucovsky G, Tsu D V. Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1987, 5 (4): 2231–2238. doi: https://doi.org/10.1116/1.574963
    [71]
    Hess D W. Plasma-enhanced CVD: Oxides, nitrides, transition metals, and transition metal silicides. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2 (2): 244–252. doi: https://doi.org/10.1116/1.572734
    [72]
    Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359. doi: 10.1038/s41586-018-0008-3
    [73]
    Demiryont H, Thompson L R, Collins G J. Optical properties of aluminum oxynitrides deposited by laser-assisted CVD. Applied Optics, 1986, 25: 1311. doi: 10.1364/AO.25.001311
    [74]
    Xu H, Wei J, Zhou H, et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Advanced Materials, 2020, 32 (17): e2000513. doi: 10.1002/adma.202000513
    [75]
    Wang L, Xu C, Liu Z, et al. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano, 2016, 10 (4): 4504–4510. doi: 10.1021/acsnano.6b00270
    [76]
    Zhang Y, Chu J, Yin L, et al. Ultrathin magnetic 2D single-crystal CrSe. Advanced Materials, 2019, 31 (19): 1900056. doi: 10.1002/adma.201900056
    [77]
    Kang L, Ye C, Zhao X, et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nature Communications, 2020, 11 (1): 3729. doi: 10.1038/s41467-020-17253-x
    [78]
    Zhao L L, Li Y Z, Zhao X M, et al. Dirac-cone-like electronic states on nematic antiferromagnetic FeSe and FeTe. Journal of Physics:Condensed Matter, 2022, 34 (32): 325801. doi: 10.1088/1361-648X/ac7277
    [79]
    Liu L, Kankam I, Zhuang H L. Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure. Physical Review B, 2018, 98 (20): 205425. doi: 10.1103/PhysRevB.98.205425
    [80]
    Teruya A, Suzuki F, Aoki D, et al. Fermi surface and magnetic properties in ferromagnet CoS2 and paramagnet CoSe2 with the pyrite-type cubic structure. Journal of Physics: Conference Series, 2017, 807: 012001. doi: 10.1088/1742-6596/807/1/012001
    [81]
    Wang X, Zhou Z, Zhang P, et al. Thickness-controlled synthesis of CoX2 (X = S, Se, and Te) single crystalline 2D layers with linear magnetoresistance and high conductivity. Chemistry of Materials, 2020, 32: 2321–2329. doi: 10.1021/acs.chemmater.9b04416
    [82]
    Liu H F, Wong S L, Chi D Z. CVD growth of MoS2-based two-dimensional materials. Chemical Vapor Deposition, 2015, 21 (10): 241–259. doi: https://doi.org/10.1002/cvde.201500060
    [83]
    Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Materials and Applications, 2017, 1: 30. doi: 10.1038/s41699-017-0033-3
    [84]
    Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator. Chinese Physics Letters, 2019, 36: 076801. doi: 10.1088/0256-307X/36/7/076801
    [85]
    Wu W, Combs N G, Stemmer S. Molecular beam epitaxy of phase-pure antiperovskite Sr3SnO thin films. Applied Physics Letters, 2021, 119: 161903. doi: 10.1063/5.0068187
    [86]
    Wang J, Powers W, Zhang Z, et al. Observation of coexisting weak localization and superconducting fluctuations in strained Sn1-xInxTe thin films. Nano Letters, 2022, 22: 792–800. doi: 10.1021/acs.nanolett.1c04370
    [87]
    Ren Z, Li H, Sharma S, et al. Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films. npj Quantum Materials, 2022, 7: 109. doi: 10.1038/s41535-022-00521-y
    [88]
    Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99. doi: 10.1038/s41586-018-0626-9
    [89]
    Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269. doi: 10.1038/nature22060
    [90]
    Huang Y, Pan Y H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11: 2453. doi: 10.1038/s41467-020-16266-w
    [91]
    Lee J U, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Letters, 2016, 16: 7433–7438. doi: 10.1021/acs.nanolett.6b03052
    [92]
    Wang X, Du K, Fredrik Liu Y Y, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Materials, 2016, 3: 031009. doi: 10.1088/2053-1583/3/3/031009
    [93]
    Du K Z, Wang X Z, Liu Y, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 2016, 10: 1738–1743. doi: 10.1021/acsnano.5b05927
    [94]
    Lee S, Choi K Y, Lee S, et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. APL Materials, 2016, 4: 086108. doi: 10.1063/1.4961211
    [95]
    Wang X, Cao J, Lu Z, et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nature Materials, 2021, 20: 964–970. doi: 10.1038/s41563-021-00968-7
    [96]
    Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Scientific Reports, 2016, 6: 20904. doi: 10.1038/srep20904
    [97]
    Hossain M, Qin B, Li B, et al. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338. doi: 10.1016/j.nantod.2021.101338
    [98]
    Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials. Science, 2013, 340: 1226419. doi: 10.1126/science.1226419
    [99]
    Shiogai J, Ito Y, Mitsuhashi T, et al. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nature Physics, 2016, 12: 42–46. doi: 10.1038/nphys3530
    [100]
    Chauhan P, Patel A B, Solanki G K, et al. Flexible self-powered electrochemical photodetector functionalized by multilayered tantalum diselenide nanocrystals. Advanced Optical Materials, 2021, 9: 2100993. doi: 10.1002/adom.202100993
    [101]
    Hui Z, Wang Y, Shen N, et al. Few-layer ZrTe3 nanosheets for ultrashort pulse mode-locked laser in 1.55 μm region. Optical Materials, 2022, 123: 111939. doi: 10.1016/j.optmat.2021.111939
    [102]
    Kong D, Randel J C, Peng H, et al. Topological insulator nanowires and nanoribbons. Nano Letters, 2010, 10: 329–333. doi: 10.1021/nl903663a
    [103]
    Sobota J A, He Y, Shen Z X. Angle-resolved photoemission studies of quantum materials. Reviews of Modern Physics, 2021, 93: 025006. doi: 10.1103/RevModPhys.93.025006
    [104]
    Shen Z, Zhu X D, Ullah R R, et al. Anomalous depinning of magnetic domain walls within the ferromagnetic phase of the Weyl semimetal Co3Sn2S2. Journal of Physics: Condensed Matter, 2023, 35: 045802. doi: 10.1088/1361-648X/aca57b
    [105]
    Wang Q, Xu Y, Lou R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nature Communications, 2018, 9: 3681. doi: 10.1038/s41467-018-06088-2
    [106]
    Belopolski I, Cochran T A, Liu X, et al. Signatures of Weyl fermion annihilation in a correlated kagome magnet. Physical Review Letters, 2021, 127: 256403. doi: 10.1103/PhysRevLett.127.256403
    [107]
    Cheng W, Wan B, Shen J, et al. Quasi-two-dimensional topological Co3Sn2S2 composite toward high rate sodium ion storage. Chemical Engineering Journal, 2022, 443: 136420. doi: 10.1016/j.cej.2022.136420
    [108]
    Fang Y, Pan J, Zhang D, et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Advanced Materials, 2019, 31: 1901942. doi: https://doi.org/10.1002/adma.201901942
    [109]
    Frolov S M, Manfra M J, Sau J D. Topological superconductivity in hybrid devices. Nature Physics, 2020, 16: 718–724. doi: 10.1038/s41567-020-0925-6
    [110]
    Shwetha G, Chandra S, Chandra Shekar N V, et al. Existence of spin-polarized Dirac cone in Sc2CrB6: A DFT study. Physica B: Condensed Matter, 2022, 624: 413369. doi: 10.1016/j.physb.2021.413369
    [111]
    Song W, Yan Z, Ban L, et al. Quantum conductivity in the topological surface state in the SbV3S5 kagome lattice. Physical Chemistry Chemical Physics, 2022, 24: 18983–18991. doi: 10.1039/D2CP02085H
    [112]
    Liu H, Zhong M, Ju M. Prediction of phonon-mediated superconductivity and topological surface states in NbRu3C. Physica B: Condensed Matter, 2022, 646: 414255. doi: 10.1016/j.physb.2022.414255
  • 加载中

Catalog

    Figure  1.  (a) Schematic diagram for synthesizing single crystals by CVT technology and optical images of topological quantum single crystals grown by CVT. Reprinted with permission from Ref. [46]. Copyright 2017, American Physical Society. (b) ZrGeSe. Reprinted with permission from Ref. [47]. Copyright 2019. American Chemical Society. (c) MnSb2Te4. Reprinted with permission from Ref. [24]. Copyright 2022. American Chemical Society. (d) MnBi2Te4. Reprinted with permission from Ref. [21]. Copyright 2021. American Physical Society. (e) SmSbTe. Reprinted with permission from Ref. [20]. Copyright 2021. John Wiley & Sons, Inc.

    Figure  2.  (a) Illustration of the preparation of single crystals by the self-flux method and optical images of topological quantum materials. Reprinted with permisssion from Ref. [46]. Copyright 2017, American Physical Society. (b) FeSn. Reprinted with permission from Ref. [48]. Copyright 2019. American Physical Society. (c) CsV3Sb5. Reprinted with permission from Ref. [49]. Copyright 2022. American Physical Society. (d) Fe3GeTe2. Reprinted with permission from Ref. [50]. Copyright 2016. American Physical Society. (e) FeSe. Reprinted with permission from Ref. [46]. Copyright 2017. American Physical Society.

    Figure  3.  Schematic diagram of FeTe material synthesis by the CVD method. Reprinted with permission from Ref. [77]. Copyright 2020. Springer Nature.

    Figure  4.  Schematic diagram of Al2O3-assisted mechanical exfoliation of Fe3GeTe2. Reprinted with permission from Ref. [88]. Copyright 2018. Springer Nature.

    Figure  5.  Schematic illustration of different liquid exfoliation procedures: (a) intercalation, (b) ion exchange, and (c) ultrasonic exfoliation. Reprinted with permission from Ref. [98]. Copyright 2011. AAAS.

    Figure  6.  (a) Photo of Co3Sn2S2 single crystals. Reprinted with permission from Ref. [104]. Copyright 2023, IOP Publishing. (b) Temperature dependence of magnetic susceptibility with ZFC and FC modes at μ0H = 1 T with H||c. Inset: field dependence of magnetization at 5 and 300 K for H||c. Reprinted with permission from Ref. [105]. Copyright 2018. Springer Nature. (c) The Brillouin zones of Co3Sn2S2 for the bulk and (111) surface with several high-symmetry points marked in red. Reprinted with permission from Ref. [106]. Copyright 2021. American Physical Society. (d) The Fermi surface in the vicinity of the $ \stackrel{-}{\mathrm{K}} $ point by using ARPES, where white arrows indicate a potential topological Fermi arc. Reprinted with permission from Ref. [106]. Copyright 2021. American Physical Society.

    Figure  7.  (a) Optical image of PbTaSe2 single crystals. (b) The diagram of helical Cooper pairing as the result of the surface-bulk proximity effect. (c) ARPES Fermi surface taken with 64 eV photons. (d) ARPES spectral cut along $ \stackrel{-}{M\text{'}} $- $ \stackrel{-}{\Gamma } $- $ \stackrel{-}{M} $. Reprinted with permission from Ref. [17]. Copyright 2016. American Physical Society.

    Figure  8.  (a) Topological surface states of 2 M-WS2, reprinted with permission from Ref. [108], copyright 2019, John Wiley & Sons, Inc. (b) Schematic diagram of the spin–orbit semiconductor nanowire coupled to the S-wave superconductor in an external magnetic field B. Majorana zero modes γ are expected at the ends of the heterogeneous nanowire, reprinted with permission from Ref. [109], copyright 2020, Springer Nature.

    [1]
    Klitzing K V, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, 45: 494–497. doi: 10.1103/PhysRevLett.45.494
    [2]
    Lv B Q, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals. Reviews of Modern Physics, 2021, 93: 025002. doi: 10.1103/RevModPhys.93.025002
    [3]
    Sato M, Ando Y. Topological superconductors: A review. Reports on Progress in Physics, 2017, 80: 076501. doi: 10.1088/1361-6633/aa6ac7
    [4]
    Read N, Green D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Physical Review B, 2000, 61: 10267–10297. doi: 10.1103/PhysRevB.61.10267
    [5]
    Kitaev A Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi, 2001, 44: 131. doi: 10.1070/1063-7869/44/10S/S29
    [6]
    Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 2008, 80: 1083–1159. doi: 10.1103/RevModPhys.80.1083
    [7]
    Xu Y, Elcoro L, Song Z D, et al. High-throughput calculations of magnetic topological materials. Nature, 2020, 586: 702–707. doi: 10.1038/s41586-020-2837-0
    [8]
    Morali N, Batabyal R, Nag P K, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science, 2019, 365: 1286–1291. doi: 10.1126/science.aav2334
    [9]
    Noky J, Zhang Y, Gooth J, et al. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. npj Computational Materials, 2020, 6: 77. doi: 10.1038/s41524-020-0342-5
    [10]
    Sharma M M, Sharma P, Karn N K, et al. Comprehensive review on topological superconducting materials and interfaces. Superconductor Science and Technology, 2022, 35: 083003. doi: 10.1088/1361-6668/ac6987
    [11]
    Bernevig B A, Felser C, Beidenkopf H. Progress and prospects in magnetic topological materials. Nature, 2022, 603: 41–51. doi: 10.1038/s41586-021-04105-x
    [12]
    Reale F, Sharda K, Mattevi C. From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3: 11–22. doi: 10.1016/j.apmt.2015.12.003
    [13]
    Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small, 2019, 15: 1804404. doi: 10.1002/smll.201804404
    [14]
    Das S, Kim M, Lee J W, et al. Synthesis, properties, and applications of 2-D materials: A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 2014, 39: 231–252. doi: 10.1080/10408436.2013.836075
    [15]
    Özel F, Arkan E, Coskun H, et al. Refractory-metal-based chalcogenides for energy. Advanced Functional Materials, 2022, 32: 2207705. doi: 10.1002/adfm.202207705
    [16]
    Binnewies M, Glaum R, Schmidt M, et al. Chemical vapor transport reactions—A historical review. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639: 219–229. doi: https://doi.org/10.1002/zaac.201300048
    [17]
    Chang T R, Chen P J, Bian G, et al. Topological Dirac surface states and superconducting pairing correlations in PbTaSe2. Physical Review B, 2016, 93: 245130. doi: 10.1103/PhysRevB.93.245130
    [18]
    Bian G, Chang T R, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nature Communications, 2016, 7 (1): 10556. doi: 10.1038/ncomms10556
    [19]
    Chen W, Liu L, Yang W, et al. Evidence of topological nodal lines and surface states in the centrosymmetric superconductor SnTaS2. Physical Review B, 2021, 103: 035133. doi: 10.1103/PhysRevB.103.035133
    [20]
    Pandey K, Mondal D, Villanova J W, et al. Magnetic topological semimetal phase with electronic correlation enhancement in SmSbTe. Advanced Quantum Technologies, 2021, 4 (10): 2100063. doi: 10.1002/qute.202100063
    [21]
    Hu C, Gao A, Berggren B S, et al. Growth, characterization and Chern insulator state in MnBi2Te4 via the chemical vapor transport method. Physical Review Materials, 2021, 5 (12): 124206. doi: 10.1103/PhysRevMaterials.5.124206
    [22]
    Zhang H, Xu C Q, Ke X. Topological Nernst effect, anomalous Nernst effect, and anomalous thermal Hall effect in the Dirac semimetal Fe3Sn2. Physical Review B, 2021, 103: L201101. doi: 10.1103/PhysRevB.103.L201101
    [23]
    Berry T, Ng N, McQueen T M. Single crystal growth tricks and treats. arXiv: 2209.09370, 2022
    [24]
    Xi M, Chen F, Gong C, et al. Relationship between antisite defects, magnetism, and band topology in MnSb2Te4 crystals with TC ≈ 40 K. The Journal of Physical Chemistry Letters, 2022, 13: 10897–10904. doi: 10.1021/acs.jpclett.2c02775
    [25]
    Murakami T, Nambu Y, Koretsune T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state. Physical Review B, 2019, 100: 195103. doi: 10.1103/PhysRevB.100.195103
    [26]
    Liu S B, Yuan J, Huh S, et al. Electronic phase diagram of iron chalcogenide superconductors FeSe1-xSx and FeSe1-yTey. arXiv: 2009.13286, 2020.
    [27]
    Wang Z, Zhang P, Xu G, et al. Topological nature of the FeSe0.5Te0.5 superconductor. Physical Review B, 2015, 92: 115119. doi: 10.1103/PhysRevB.92.115119
    [28]
    Yang Y, Feng S Q, Xiang Y Y, et al. Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS. Chinese Physics B, 2017, 26: 127401. doi: 10.1088/1674-1056/26/12/127401
    [29]
    Adam M L, Liu Z, Moses O A, et al. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Research, 2021, 14: 2613–2619. doi: 10.1007/s12274-020-3262-2
    [30]
    Li M, Fang Y, Pei C, et al. Phonon softening and higher-order anharmonic effect in the superconducting topological insulator SrxBi2Se3. Journal of Physics: Condensed Matter, 2020, 32: 385701. doi: 10.1088/1361-648X/ab9344
    [31]
    Liu Z, Yao X, Shao J, et al. Superconductivity with topological surface state in SrxBi2Se3. Journal of the American Chemical Society, 2015, 137 (33): 10512–10515. doi: https://doi.org/10.1021/jacs.5b06815
    [32]
    Du G, Shao J, Yang X, et al. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3. Nature Communications, 2017, 8 (1): 14466. doi: 10.1038/ncomms14466
    [33]
    Han C Q, Li H, Chen W J, et al. Electronic structure of a superconducting topological insulator Sr-doped Bi2Se3. Applied Physics Letters, 2015, 107: 171602. doi: 10.1063/1.4934590
    [34]
    Hor Y S, Williams A J, Checkelsky J G, et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Physical Review Letters, 2010, 104: 057001. doi: 10.1103/PhysRevLett.104.057001
    [35]
    Kriener M, Segawa K, Ren Z, et al. Bulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3. Physical Review Letters, 2011, 106 (12): 127004. doi: 10.1103/PhysRevLett.106.127004
    [36]
    Wray L A, Xu S-Y, Xia Y, et al. Observation of topological order in a superconducting doped topological insulator. Nature Physics, 2010, 6 (11): 855–859. doi: 10.1038/nphys1762
    [37]
    Kriener M, Segawa K, Ren Z, et al. , Electrochemical synthesis and superconducting phase diagram of CuxBi2Se3. Physical Review B, 2011, 84 (5): 054513. doi: 10.1103/PhysRevB.84.054513
    [38]
    Trang C X, Wang Z, Takane D, et al. Fermiology of possible topological superconductor Tl0.5Bi2Te3 derived from hole-doped topological insulator. Physical Review B, 2016, 93 (24): 241103. doi: 10.1103/PhysRevB.93.241103
    [39]
    Venderbos J W F, Kozii V, Fu L. Identification of nematic superconductivity from the upper critical field. Physical Review B, 2016, 94: 094522. doi: 10.1103/PhysRevB.94.094522
    [40]
    Qiu Y S, Sanders K N, Dai J X, et al. Time reversal symmetry breaking superconductivity in topological materials. arXiv: 1512.03519, 2015.
    [41]
    Tanaka M, Fujishiro Y, Mogi M, et al. Topological kagome magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect. Nano Letters, 2020, 20 (10): 7476–7481. doi: 10.1021/acs.nanolett.0c02962
    [42]
    Kanagaraj M, Ning J, He L. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study. Reviews in Physics, 2022, 8: 100072. doi: 10.1016/j.revip.2022.100072
    [43]
    Ding L, Koo J, Xu L, et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Physical Review X, 2019, 9 (4): 041061. doi: 10.1103/PhysRevX.9.041061
    [44]
    Sasaki S, Ren Z, Taskin A A, et al. Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor. Physical Review Letters, 2012, 109 (21): 217004. doi: 10.1103/PhysRevLett.109.217004
    [45]
    Kanatzidis M G, Pöttgen R, Jeitschko W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angewandte Chemie International Edition, 2005, 44: 6996–7023. doi: 10.1002/anie.200462170
    [46]
    Yan J Q, Sales B C, Susner M A, et al. Flux growth in a horizontal configuration: An analog to vapor transport growth. Physical Review Materials, 2017, 1: 023402. doi: 10.1103/PhysRevMaterials.1.023402
    [47]
    Guo L, Chen T W, Chen C, et al. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Applied Electronic Materials, 2019, 1: 869–876. doi: 10.1021/acsaelm.9b00061
    [48]
    Sales B C, Yan J, Meier W R, et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Physical Review Materials, 2019, 3: 114203. doi: 10.1103/PhysRevMaterials.3.114203
    [49]
    Shrestha K, Chapai R, Pokharel B K, et al. Nontrivial Fermi surface topology of the kagome superconductor CsV3Sb5 probed by de Haas-van alphen oscillations. Physical Review B, 2022, 105: 024508. doi: 10.1103/PhysRevB.105.024508
    [50]
    May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Physical Review B, 2016, 93: 014411. doi: 10.1103/PhysRevB.93.014411
    [51]
    Kang M, Fang S, Ye L, et al. Topological flat bands in frustrated kagome lattice CoSn. Nature Communications, 2020, 11: 4004. doi: 10.1038/s41467-020-17465-1
    [52]
    Liu Z, Li M, Wang Q, et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nature Communications, 2020, 11: 4002. doi: 10.1038/s41467-020-17462-4
    [53]
    Meier W R, Du M H, Okamoto S, et al. Flat bands in the CoSn-type compounds. Physical Review B, 2020, 102: 075148. doi: 10.1103/PhysRevB.102.075148
    [54]
    Zhao H, Li H, Ortiz B R, et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature, 2021, 599: 216–221. doi: 10.1038/s41586-021-03946-w
    [55]
    Zhao C C, Wang L X, Xia W, et al., Nodal superconductivity and superconducting dome in the topological Kagome metal CsV3Sb5. arXiv:2102.08356, 2021.
    [56]
    Kang M, Fang S, Kim J K, et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nature Physics, 2022, 18: 301–308. doi: 10.1038/s41567-021-01451-5
    [57]
    Gupta R, Das D, Mielke III C H, et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Materials, 2022, 7: 49. doi: 10.1038/s41535-022-00453-7
    [58]
    Ge J, Wang P Y, Xing Y, et al. Discovery of charge-4e and charge-6e superconductivity in kagome superconductor CsV3Sb5. arXiv: 2201.10352, 2022.
    [59]
    Xiang Y, Li Q, Li Y, et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nature Communications, 2021, 12 (1): 6727. doi: 10.1038/s41467-021-27084-z
    [60]
    Jiang Y X, Yin J X, Denner M M, et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nature Materials, 2021, 20 (10): 1353–1357. doi: 10.1038/s41563-021-01034-y
    [61]
    Li H, Zhao H, Ortiz B R, et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nature Physics, 2022, 18 (3): 265–270. doi: 10.1038/s41567-021-01479-7
    [62]
    Jiang K, Wu T, Yin J X, et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). National Science Review, 2023, 10 (2): nwac199. doi: 10.1093/nsr/nwac199
    [63]
    Xing Y, Wang H, Li C K, et al. Superconductivity in topologically nontrivial material Au2Pb. npj Quantum Materials, 2016, 1: 16005. doi: 10.1038/npjquantmats.2016.5
    [64]
    Schoop L M, Xie L S, Chen R, et al. Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z2 topology for the superconductor. Physical Review B, 2015, 91: 214517. doi: 10.1103/PhysRevB.91.214517
    [65]
    Xing Y, Shao Z, Ge J, et al. Surface superconductivity in the type II Weyl semimetal TaIrTe4. National Science Review, 2020, 7 (3): 579–587. doi: 10.1093/nsr/nwz204
    [66]
    Yu J, Li J, Zhang W, et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science, 2015, 6 (12): 6705–6716. doi: 10.1039/C5SC01941A
    [67]
    Saitoh T, Muramatsu S, Shimada T, et al. Optical and electrical properties of amorphous silicon films prepared by photochemical vapor deposition. Applied Physics Letters, 1983, 42 (8): 678–679. doi: 10.1063/1.94069
    [68]
    Zhou S, Wang R, Han J, et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and Raman scattering investigation. Advanced Functional Materials, 2019, 29 (3): 1805880. doi: 10.1002/adfm.201805880
    [69]
    Yi K, Liu D, Chen X, et al. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Accounts of Chemical Research, 2021, 54 (4): 1011–1022. doi: 10.1021/acs.accounts.0c00757
    [70]
    Lucovsky G, Tsu D V. Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1987, 5 (4): 2231–2238. doi: https://doi.org/10.1116/1.574963
    [71]
    Hess D W. Plasma-enhanced CVD: Oxides, nitrides, transition metals, and transition metal silicides. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2 (2): 244–252. doi: https://doi.org/10.1116/1.572734
    [72]
    Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359. doi: 10.1038/s41586-018-0008-3
    [73]
    Demiryont H, Thompson L R, Collins G J. Optical properties of aluminum oxynitrides deposited by laser-assisted CVD. Applied Optics, 1986, 25: 1311. doi: 10.1364/AO.25.001311
    [74]
    Xu H, Wei J, Zhou H, et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Advanced Materials, 2020, 32 (17): e2000513. doi: 10.1002/adma.202000513
    [75]
    Wang L, Xu C, Liu Z, et al. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano, 2016, 10 (4): 4504–4510. doi: 10.1021/acsnano.6b00270
    [76]
    Zhang Y, Chu J, Yin L, et al. Ultrathin magnetic 2D single-crystal CrSe. Advanced Materials, 2019, 31 (19): 1900056. doi: 10.1002/adma.201900056
    [77]
    Kang L, Ye C, Zhao X, et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nature Communications, 2020, 11 (1): 3729. doi: 10.1038/s41467-020-17253-x
    [78]
    Zhao L L, Li Y Z, Zhao X M, et al. Dirac-cone-like electronic states on nematic antiferromagnetic FeSe and FeTe. Journal of Physics:Condensed Matter, 2022, 34 (32): 325801. doi: 10.1088/1361-648X/ac7277
    [79]
    Liu L, Kankam I, Zhuang H L. Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure. Physical Review B, 2018, 98 (20): 205425. doi: 10.1103/PhysRevB.98.205425
    [80]
    Teruya A, Suzuki F, Aoki D, et al. Fermi surface and magnetic properties in ferromagnet CoS2 and paramagnet CoSe2 with the pyrite-type cubic structure. Journal of Physics: Conference Series, 2017, 807: 012001. doi: 10.1088/1742-6596/807/1/012001
    [81]
    Wang X, Zhou Z, Zhang P, et al. Thickness-controlled synthesis of CoX2 (X = S, Se, and Te) single crystalline 2D layers with linear magnetoresistance and high conductivity. Chemistry of Materials, 2020, 32: 2321–2329. doi: 10.1021/acs.chemmater.9b04416
    [82]
    Liu H F, Wong S L, Chi D Z. CVD growth of MoS2-based two-dimensional materials. Chemical Vapor Deposition, 2015, 21 (10): 241–259. doi: https://doi.org/10.1002/cvde.201500060
    [83]
    Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Materials and Applications, 2017, 1: 30. doi: 10.1038/s41699-017-0033-3
    [84]
    Gong Y, Guo J, Li J, et al. Experimental realization of an intrinsic magnetic topological insulator. Chinese Physics Letters, 2019, 36: 076801. doi: 10.1088/0256-307X/36/7/076801
    [85]
    Wu W, Combs N G, Stemmer S. Molecular beam epitaxy of phase-pure antiperovskite Sr3SnO thin films. Applied Physics Letters, 2021, 119: 161903. doi: 10.1063/5.0068187
    [86]
    Wang J, Powers W, Zhang Z, et al. Observation of coexisting weak localization and superconducting fluctuations in strained Sn1-xInxTe thin films. Nano Letters, 2022, 22: 792–800. doi: 10.1021/acs.nanolett.1c04370
    [87]
    Ren Z, Li H, Sharma S, et al. Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films. npj Quantum Materials, 2022, 7: 109. doi: 10.1038/s41535-022-00521-y
    [88]
    Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99. doi: 10.1038/s41586-018-0626-9
    [89]
    Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269. doi: 10.1038/nature22060
    [90]
    Huang Y, Pan Y H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11: 2453. doi: 10.1038/s41467-020-16266-w
    [91]
    Lee J U, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Letters, 2016, 16: 7433–7438. doi: 10.1021/acs.nanolett.6b03052
    [92]
    Wang X, Du K, Fredrik Liu Y Y, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Materials, 2016, 3: 031009. doi: 10.1088/2053-1583/3/3/031009
    [93]
    Du K Z, Wang X Z, Liu Y, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 2016, 10: 1738–1743. doi: 10.1021/acsnano.5b05927
    [94]
    Lee S, Choi K Y, Lee S, et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. APL Materials, 2016, 4: 086108. doi: 10.1063/1.4961211
    [95]
    Wang X, Cao J, Lu Z, et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nature Materials, 2021, 20: 964–970. doi: 10.1038/s41563-021-00968-7
    [96]
    Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Scientific Reports, 2016, 6: 20904. doi: 10.1038/srep20904
    [97]
    Hossain M, Qin B, Li B, et al. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338. doi: 10.1016/j.nantod.2021.101338
    [98]
    Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials. Science, 2013, 340: 1226419. doi: 10.1126/science.1226419
    [99]
    Shiogai J, Ito Y, Mitsuhashi T, et al. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nature Physics, 2016, 12: 42–46. doi: 10.1038/nphys3530
    [100]
    Chauhan P, Patel A B, Solanki G K, et al. Flexible self-powered electrochemical photodetector functionalized by multilayered tantalum diselenide nanocrystals. Advanced Optical Materials, 2021, 9: 2100993. doi: 10.1002/adom.202100993
    [101]
    Hui Z, Wang Y, Shen N, et al. Few-layer ZrTe3 nanosheets for ultrashort pulse mode-locked laser in 1.55 μm region. Optical Materials, 2022, 123: 111939. doi: 10.1016/j.optmat.2021.111939
    [102]
    Kong D, Randel J C, Peng H, et al. Topological insulator nanowires and nanoribbons. Nano Letters, 2010, 10: 329–333. doi: 10.1021/nl903663a
    [103]
    Sobota J A, He Y, Shen Z X. Angle-resolved photoemission studies of quantum materials. Reviews of Modern Physics, 2021, 93: 025006. doi: 10.1103/RevModPhys.93.025006
    [104]
    Shen Z, Zhu X D, Ullah R R, et al. Anomalous depinning of magnetic domain walls within the ferromagnetic phase of the Weyl semimetal Co3Sn2S2. Journal of Physics: Condensed Matter, 2023, 35: 045802. doi: 10.1088/1361-648X/aca57b
    [105]
    Wang Q, Xu Y, Lou R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nature Communications, 2018, 9: 3681. doi: 10.1038/s41467-018-06088-2
    [106]
    Belopolski I, Cochran T A, Liu X, et al. Signatures of Weyl fermion annihilation in a correlated kagome magnet. Physical Review Letters, 2021, 127: 256403. doi: 10.1103/PhysRevLett.127.256403
    [107]
    Cheng W, Wan B, Shen J, et al. Quasi-two-dimensional topological Co3Sn2S2 composite toward high rate sodium ion storage. Chemical Engineering Journal, 2022, 443: 136420. doi: 10.1016/j.cej.2022.136420
    [108]
    Fang Y, Pan J, Zhang D, et al. Discovery of superconductivity in 2M WS2 with possible topological surface states. Advanced Materials, 2019, 31: 1901942. doi: https://doi.org/10.1002/adma.201901942
    [109]
    Frolov S M, Manfra M J, Sau J D. Topological superconductivity in hybrid devices. Nature Physics, 2020, 16: 718–724. doi: 10.1038/s41567-020-0925-6
    [110]
    Shwetha G, Chandra S, Chandra Shekar N V, et al. Existence of spin-polarized Dirac cone in Sc2CrB6: A DFT study. Physica B: Condensed Matter, 2022, 624: 413369. doi: 10.1016/j.physb.2021.413369
    [111]
    Song W, Yan Z, Ban L, et al. Quantum conductivity in the topological surface state in the SbV3S5 kagome lattice. Physical Chemistry Chemical Physics, 2022, 24: 18983–18991. doi: 10.1039/D2CP02085H
    [112]
    Liu H, Zhong M, Ju M. Prediction of phonon-mediated superconductivity and topological surface states in NbRu3C. Physica B: Condensed Matter, 2022, 646: 414255. doi: 10.1016/j.physb.2022.414255

    Article Metrics

    Article views (943) PDF downloads(2555)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return