QGAE: an end-to-end answer-agnostic question generation model for generating question-answer pairs
-
Abstract
Question generation aims to generate meaningful and fluent questions, which can address the lack of a question-answer type annotated corpus by augmenting the available data. Using unannotated text with optional answers as input contents, question generation can be divided into two types based on whether answers are provided: answer-aware and answer-agnostic. While generating questions by providing answers is challenging, generating high-quality questions without providing answers is even more difficult for both humans and machines. To address this issue, we proposed a novel end-to-end model called question generation with answer extractor (QGAE), which is able to transform answer-agnostic question generation into answer-aware question generation by directly extracting candidate answers. This approach effectively utilizes unlabeled data for generating high-quality question-answer pairs, and its end-to-end design makes it more convenient than a multi-stage method that requires at least two pre-trained models. Moreover, our model achieves better average scores and greater diversity. Our experiments show that QGAE achieves significant improvements in generating question-answer pairs, making it a promising approach for question generation.
-
-