ISSN 0253-2778

CN 34-1054/N

open

Physically plausible and conservative solutions to Navier–Stokes equations using physics-informed CNNs

  • The physics-informed neural network (PINN) is an emerging approach for efficiently solving partial differential equations (PDEs) using neural networks. The physics-informed convolutional neural network (PICNN), a variant of PINN enhanced by convolutional neural networks (CNNs), has achieved better results on a series of PDEs since the parameter-sharing property of CNNs is effective in learning spatial dependencies. However, applying existing PICNN-based methods to solve Navier–Stokes equations can generate oscillating predictions, which are inconsistent with the laws of physics and the conservation properties. To address this issue, we propose a novel method that combines PICNN with the finite volume method to obtain physically plausible and conservative solutions to Navier–Stokes equations. We derive the second-order upwind difference scheme of Navier–Stokes equations using the finite volume method. Then we use the derived scheme to calculate the partial derivatives and construct the physics-informed loss function. The proposed method is assessed by experiments on steady-state Navier–Stokes equations under different scenarios, including convective heat transfer and lid-driven cavity flow. The experimental results demonstrate that our method can effectively improve the plausibility and accuracy of the predicted solutions from PICNN.
  • loading

Catalog

    {{if article.pdfAccess}}
    {{if article.articleBusiness.pdfLink && article.articleBusiness.pdfLink != ''}} {{else}} {{/if}}PDF
    {{/if}}
    XML

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return