[1] |
An Q, Chen H, Wu J, et al. Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output. Annals of Operations Research, 2015, 235 (1): 13–35. doi: 10.1007/s10479-015-1987-1
|
[2] |
Cook W D, Liang L, Zha Y, et al. A modified super-efficiency DEA model for infeasibility. Journal of the Operational Research Society, 2009, 60 (2): 276–81. doi: 10.1057/palgrave.jors.2602544
|
[3] |
Liang X, Zhou Z. Cooperation and competition among urban agglomerations in environmental efficiency measurement: A cross-efficiency approach. JUSTC, 2022, 52 (4): 3. doi: 10.52396/JUSTC-2022-0028
|
[4] |
Chen Y, Tsionas M G, Zelenyuk V. LASSO+DEA for small and big wide data. Omega, 2021, 102: 102419. doi: 10.1016/j.omega.2021.102419
|
[5] |
Lee C Y, Cai J Y. LASSO variable selection in data envelopment analysis with small datasets. Omega, 2020, 91: 102019. doi: 10.1016/j.omega.2018.12.008
|
[6] |
Golany B, Roll Y. An application procedure for DEA. Omega, 1989, 17 (3): 237–250. doi: 10.1016/0305-0483(89)90029-7
|
[7] |
Boussofiane A, Dyson R G, Thanassoulis E. Applied data envelopment analysis. European Journal of Operational Research, 1991, 52 (1): 1–15. doi: 10.1016/0377-2217(91)90331-O
|
[8] |
Bowlin W F. Measuring performance: An introduction to data envelopment analysis (DEA). The Journal of Cost Analysis, 1998, 15 (2): 3–27. doi: 10.1080/08823871.1998.10462318
|
[9] |
Cooper W W, Seiford L M, Tone K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. New York: Springer, 2007.
|
[10] |
Sehra S, Flores D, Montañez G D. Undecidability of underfitting in learning algorithms. In: 2021 2nd International Conference on Computing and Data Science (CDS). Stanford, CA: IEEE, 2021: 28–29.
|
[11] |
Ueda T, Hoshiai Y. Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. Journal of the Operations Research Society of Japan, 1997, 40 (4): 466–478. doi: 10.15807/jorsj.40.466
|
[12] |
Adler N, Golany B. Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operational Research Society, 2002, 53 (9): 985–991. doi: 10.1057/palgrave.jors.2601400
|
[13] |
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B (Methodological), 1996, 58 (1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
[14] |
Rosa G J M. The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Hastie T, Tibshirani R, and Friedman J. Biometrics, 2010, 66 (4): 1315–1315. doi: 10.1111/j.1541-0420.2010.01516.x
|
[15] |
Li S, Fang H, Liu X. Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications, 2018, 91: 63–77. doi: 10.1016/j.eswa.2017.08.038
|
[16] |
Breiman L. Random forests. Machine Learning, 2001, 45 (1): 5–32. doi: 10.1023/A:1010933404324
|
[17] |
Friedman J H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 2001, 29 (5): 1189–1232. doi: 10.1214/aos/1013203450
|
[18] |
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3: 1157–1182.
|
[19] |
Mézard M, Montanari A. Information, Physics, and Computation. Oxford: Oxford University Press, 2009: 584.
|
[20] |
Profillidis V A, Botzoris G N. Chapter 5: Statistical methods for transport demand modeling. In: Modeling of Transport Demand. Amsterdam: Elsevier, 2019: 163–224.
|
[21] |
Biswas S, Bordoloi M, Purkayastha B. Review on feature selection and classification using neuro-fuzzy approaches. International Journal of Applied Evolutionary Computation, 2016, 7: 28–44. doi: 10.4018/IJAEC.2016100102
|
[22] |
Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information. Physical Review A, 1986, 33 (2): 1134–1140. doi: 10.1103/PhysRevA.33.1134
|
[23] |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets. Science, 2011, 334 (6062): 1518–1524. doi: 10.1126/science.1205438
|
[24] |
Zhang Z, Dong J, Luo X, et al. Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine, 2014, 46: 79–89. doi: 10.1016/j.compbiomed.2013.11.019
|
[25] |
Soares F, Anzanello M J. Support vector regression coupled with wavelength selection as a robust analytical method. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 167–173. doi: 10.1016/j.chemolab.2017.12.007
|
[26] |
Friedman J H. Multivariate adaptive regression splines. The Annals of Statistics, 1991, 19 (1): 1–67. doi: 10.1214/aos/1176347963
|
[27] |
Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2): 123–140. doi: 10.1023/A:1018054314350
|
[1] |
An Q, Chen H, Wu J, et al. Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output. Annals of Operations Research, 2015, 235 (1): 13–35. doi: 10.1007/s10479-015-1987-1
|
[2] |
Cook W D, Liang L, Zha Y, et al. A modified super-efficiency DEA model for infeasibility. Journal of the Operational Research Society, 2009, 60 (2): 276–81. doi: 10.1057/palgrave.jors.2602544
|
[3] |
Liang X, Zhou Z. Cooperation and competition among urban agglomerations in environmental efficiency measurement: A cross-efficiency approach. JUSTC, 2022, 52 (4): 3. doi: 10.52396/JUSTC-2022-0028
|
[4] |
Chen Y, Tsionas M G, Zelenyuk V. LASSO+DEA for small and big wide data. Omega, 2021, 102: 102419. doi: 10.1016/j.omega.2021.102419
|
[5] |
Lee C Y, Cai J Y. LASSO variable selection in data envelopment analysis with small datasets. Omega, 2020, 91: 102019. doi: 10.1016/j.omega.2018.12.008
|
[6] |
Golany B, Roll Y. An application procedure for DEA. Omega, 1989, 17 (3): 237–250. doi: 10.1016/0305-0483(89)90029-7
|
[7] |
Boussofiane A, Dyson R G, Thanassoulis E. Applied data envelopment analysis. European Journal of Operational Research, 1991, 52 (1): 1–15. doi: 10.1016/0377-2217(91)90331-O
|
[8] |
Bowlin W F. Measuring performance: An introduction to data envelopment analysis (DEA). The Journal of Cost Analysis, 1998, 15 (2): 3–27. doi: 10.1080/08823871.1998.10462318
|
[9] |
Cooper W W, Seiford L M, Tone K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. New York: Springer, 2007.
|
[10] |
Sehra S, Flores D, Montañez G D. Undecidability of underfitting in learning algorithms. In: 2021 2nd International Conference on Computing and Data Science (CDS). Stanford, CA: IEEE, 2021: 28–29.
|
[11] |
Ueda T, Hoshiai Y. Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs. Journal of the Operations Research Society of Japan, 1997, 40 (4): 466–478. doi: 10.15807/jorsj.40.466
|
[12] |
Adler N, Golany B. Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operational Research Society, 2002, 53 (9): 985–991. doi: 10.1057/palgrave.jors.2601400
|
[13] |
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B (Methodological), 1996, 58 (1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
[14] |
Rosa G J M. The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Hastie T, Tibshirani R, and Friedman J. Biometrics, 2010, 66 (4): 1315–1315. doi: 10.1111/j.1541-0420.2010.01516.x
|
[15] |
Li S, Fang H, Liu X. Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications, 2018, 91: 63–77. doi: 10.1016/j.eswa.2017.08.038
|
[16] |
Breiman L. Random forests. Machine Learning, 2001, 45 (1): 5–32. doi: 10.1023/A:1010933404324
|
[17] |
Friedman J H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 2001, 29 (5): 1189–1232. doi: 10.1214/aos/1013203450
|
[18] |
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3: 1157–1182.
|
[19] |
Mézard M, Montanari A. Information, Physics, and Computation. Oxford: Oxford University Press, 2009: 584.
|
[20] |
Profillidis V A, Botzoris G N. Chapter 5: Statistical methods for transport demand modeling. In: Modeling of Transport Demand. Amsterdam: Elsevier, 2019: 163–224.
|
[21] |
Biswas S, Bordoloi M, Purkayastha B. Review on feature selection and classification using neuro-fuzzy approaches. International Journal of Applied Evolutionary Computation, 2016, 7: 28–44. doi: 10.4018/IJAEC.2016100102
|
[22] |
Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information. Physical Review A, 1986, 33 (2): 1134–1140. doi: 10.1103/PhysRevA.33.1134
|
[23] |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets. Science, 2011, 334 (6062): 1518–1524. doi: 10.1126/science.1205438
|
[24] |
Zhang Z, Dong J, Luo X, et al. Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine, 2014, 46: 79–89. doi: 10.1016/j.compbiomed.2013.11.019
|
[25] |
Soares F, Anzanello M J. Support vector regression coupled with wavelength selection as a robust analytical method. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 167–173. doi: 10.1016/j.chemolab.2017.12.007
|
[26] |
Friedman J H. Multivariate adaptive regression splines. The Annals of Statistics, 1991, 19 (1): 1–67. doi: 10.1214/aos/1176347963
|
[27] |
Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2): 123–140. doi: 10.1023/A:1018054314350
|