[1] |
Yaari M E. The dual theory of choice under risk. Econometrica, 1987, 9: 5–115. doi: 10.2307/1911158
|
[2] |
Friedman M, Savage L J. The utility analysis of choices involving risk. Journal of Political Economy, 1948, 56 (4): 279–304. doi: 10.1086/256692
|
[3] |
Markowitz H. The utility of wealth. Journal of Political Economy, 1952, 60 (2): 151–158. doi: 10.1086/257177
|
[4] |
Leshno M, Levy H. Preferred by “all” and preferred by “most” decision makers: Almost stochastic dominance. Management Science, 2002, 48 (8): 1074–1085. doi: 10.1287/mnsc.48.8.1074.169
|
[5] |
Meyer J. Second degree stochastic dominance with respect to a function. International Economic Review, 1977, 47: 7–487. doi: 10.2307/2525760
|
[6] |
Pratt J W. Risk aversion in the small and in the large. Econometrica, 1964, 32: 122–136. doi: 10.2307/1913738
|
[7] |
Lando T, Bertoli-Barsotti L. Distorted stochastic dominance: A generalized family of stochastic orders. Journal of Mathematical Economics, 2020, 90: 132–139. doi: 10.1016/j.jmateco.2020.07.005
|
[8] |
Quiggin J. A theory of anticipated utility. Journal of Economic Behavior and Organization, 1982, 3: 323–343. doi: 10.1016/0167-2681(82)90008-7
|
[9] |
Fishburn P C. Continua of stochastic dominance relations for bounded probability distributions. Journal of Mathematical Economics, 1976, 3 (3): 295–311. doi: 10.1016/0304-4068(76)90015-x
|
[10] |
Tsetlin I, Winkler R L, Huang R J, et al. Generalized almost stochastic dominance. Operations Research, 2015, 63 (2): 363–377. doi: 10.1287/opre.2014.1340
|
[11] |
Müller A, Scarsini M, Tsetlin I, et al. Between first- and second-order stochastic dominance. Management Science, 2017, 63 (9): 2933–2947. doi: 10.1287/mnsc.2016.2486
|
[12] |
Huang R J, Tzeng L Y, Zhao L. Fractional degree stochastic dominance. Management Science, 2020, 66 (10): 4630–4647. doi: 10.1287/mnsc.2019.3406
|
[13] |
Thistle P D. Ranking distributions with generalized Lorenz curves. Southern Economic Journal, 1989, 56 (1): 1–12. doi: 10.2307/1059050
|
[14] |
Shaked M, Shanthikumar J G. Stochastic Orders. New York: Springer, 2007.
|
[15] |
Liu P, Schied A, Wang R. Distributional transforms, probability distortions, and their applications. Mathematics of Operations Research, 2021, 46 (4): 1490–1512. doi: 10.1287/moor.2020.1090
|
[16] |
Chew S H, Karni E, Safra Z. Risk aversion in the theory of expected utility with rank dependent probabilities. Journal of Economic Theory, 1987, 42: 370–381. doi: 10.1016/0022-0531(87)90093-7
|
[17] |
Wang S S, Young V R. Ordering risks: Expected utility theory versus Yaari’s dual theory of risk. Insurance:Mathematics and Economics, 1998, 22 (2): 145–161. doi: 10.1016/s0167-6687(97)00036-x
|
[18] |
Mao T, Wu Q, Hu T. Further properties of fractional stochastic dominance. Journal of Applied Probability, 2022, 59 (1): 202–223. doi: 10.1017/jpr.2021.44
|
[19] |
Mao T, Wang R. A critical comparison of three notions of fractional stochastic dominance. 2020. https://ssrn.com/abstract=3642983. Accessed July 1, 2022.
|
[20] |
Levy H, Wiener Z. Stochastic dominance and prospect dominance with subjective weighting functions. Journal of Risk and Uncertainty, 1998, 16 (2): 147–163. doi: 10.1023/a:1007730226688
|
[21] |
Müller A, Stoyan D. Comparison Methods for Stochastic Models and Risks. Hoboken, NJ: Wiley, 2022.
|
[1] |
Yaari M E. The dual theory of choice under risk. Econometrica, 1987, 9: 5–115. doi: 10.2307/1911158
|
[2] |
Friedman M, Savage L J. The utility analysis of choices involving risk. Journal of Political Economy, 1948, 56 (4): 279–304. doi: 10.1086/256692
|
[3] |
Markowitz H. The utility of wealth. Journal of Political Economy, 1952, 60 (2): 151–158. doi: 10.1086/257177
|
[4] |
Leshno M, Levy H. Preferred by “all” and preferred by “most” decision makers: Almost stochastic dominance. Management Science, 2002, 48 (8): 1074–1085. doi: 10.1287/mnsc.48.8.1074.169
|
[5] |
Meyer J. Second degree stochastic dominance with respect to a function. International Economic Review, 1977, 47: 7–487. doi: 10.2307/2525760
|
[6] |
Pratt J W. Risk aversion in the small and in the large. Econometrica, 1964, 32: 122–136. doi: 10.2307/1913738
|
[7] |
Lando T, Bertoli-Barsotti L. Distorted stochastic dominance: A generalized family of stochastic orders. Journal of Mathematical Economics, 2020, 90: 132–139. doi: 10.1016/j.jmateco.2020.07.005
|
[8] |
Quiggin J. A theory of anticipated utility. Journal of Economic Behavior and Organization, 1982, 3: 323–343. doi: 10.1016/0167-2681(82)90008-7
|
[9] |
Fishburn P C. Continua of stochastic dominance relations for bounded probability distributions. Journal of Mathematical Economics, 1976, 3 (3): 295–311. doi: 10.1016/0304-4068(76)90015-x
|
[10] |
Tsetlin I, Winkler R L, Huang R J, et al. Generalized almost stochastic dominance. Operations Research, 2015, 63 (2): 363–377. doi: 10.1287/opre.2014.1340
|
[11] |
Müller A, Scarsini M, Tsetlin I, et al. Between first- and second-order stochastic dominance. Management Science, 2017, 63 (9): 2933–2947. doi: 10.1287/mnsc.2016.2486
|
[12] |
Huang R J, Tzeng L Y, Zhao L. Fractional degree stochastic dominance. Management Science, 2020, 66 (10): 4630–4647. doi: 10.1287/mnsc.2019.3406
|
[13] |
Thistle P D. Ranking distributions with generalized Lorenz curves. Southern Economic Journal, 1989, 56 (1): 1–12. doi: 10.2307/1059050
|
[14] |
Shaked M, Shanthikumar J G. Stochastic Orders. New York: Springer, 2007.
|
[15] |
Liu P, Schied A, Wang R. Distributional transforms, probability distortions, and their applications. Mathematics of Operations Research, 2021, 46 (4): 1490–1512. doi: 10.1287/moor.2020.1090
|
[16] |
Chew S H, Karni E, Safra Z. Risk aversion in the theory of expected utility with rank dependent probabilities. Journal of Economic Theory, 1987, 42: 370–381. doi: 10.1016/0022-0531(87)90093-7
|
[17] |
Wang S S, Young V R. Ordering risks: Expected utility theory versus Yaari’s dual theory of risk. Insurance:Mathematics and Economics, 1998, 22 (2): 145–161. doi: 10.1016/s0167-6687(97)00036-x
|
[18] |
Mao T, Wu Q, Hu T. Further properties of fractional stochastic dominance. Journal of Applied Probability, 2022, 59 (1): 202–223. doi: 10.1017/jpr.2021.44
|
[19] |
Mao T, Wang R. A critical comparison of three notions of fractional stochastic dominance. 2020. https://ssrn.com/abstract=3642983. Accessed July 1, 2022.
|
[20] |
Levy H, Wiener Z. Stochastic dominance and prospect dominance with subjective weighting functions. Journal of Risk and Uncertainty, 1998, 16 (2): 147–163. doi: 10.1023/a:1007730226688
|
[21] |
Müller A, Stoyan D. Comparison Methods for Stochastic Models and Risks. Hoboken, NJ: Wiley, 2022.
|