[1] |
Yang W Y, Li T, Cao X S. Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: A panel data analysis of China’s provinces. Habitat International, 2015, 49 (5): 212–220. doi: 10.1016/j.habitatint.2015.05.030
|
[2] |
Ma J, Liu Z L, Chai Y W. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China. Habitat International, 2015, 47 (12): 1–10. doi: 10.1016/j.habitatint.2014.12.007
|
[3] |
Li C, Zan D L. An empirical study on carbon emission measurement and decomposition model of my country’s logistics and transportation industry. Resource Development & Market, 2015, 31 (10): 1197–1199, 1213. doi: 10.3969/j.issn.1005-8141.2015.10.009
|
[4] |
Wang F Z, Shen Z Z. Research on substitution utility and urbanization utility of energy consumption in logistics industry. Chinese Journal of Management Science, 2016, 24 (9): 45–52. doi: 10.16381/j.cnki.issn1003-207x.2016.09.006
|
[5] |
Yang G H. System dynamics analysis of low-carbon logistics development. Logistics Sci-Tech, 2012, 35 (12): 32–35. doi: 10.3969/j.issn.1002-3100.2012.12.011
|
[6] |
Royer S J, Ferrón S, Wilson S T, et al. Production of methane and ethylene from plastic in the environment. PLoS ONE, 2018, 13 (8): e0200574. doi: 10.1371/journal.pone.0200574
|
[7] |
Zhai Y P. Greening of express packaging. China Logistics & Purchasing, 2016, 1: 47–48.
|
[8] |
Qu W X, Ma M Q, Miao Z M. Research on the problems and countermeasures of express green packaging. China Storage & Transport, 2022 (4): 155–157. doi: 10.3969/j.issn.1005-0434.2022.04.076
|
[9] |
Yang F H, Pan X. Analysis of the development path of express packaging under the trend of green logistics. China Logistics & Purchasing, 2021 (23): 76–77. doi: 10.16079/j.cnki.issn1671-6663.2021.23.042
|
[10] |
Li L H, Huang J P, Li L J, et al. System model and simulation of logistics cluster based on the synergistic network. Systems Engineering, 2022, 40 (2): 98–108.
|
[11] |
Van Dender K. Energy policy in transport and transport policy. Energy Policy, 2009, 37 (10): 3854–3862. doi: 10.1016/j.enpol.2009.07.008
|
[12] |
Yang Y, Xu X Y. Research on the evolution of low-carbon behavior of logistics enterprises considering carbon tax policy. Journal of Safety and Environment, 2021, 21 (4): 1750–1758. doi: 10.13637/j.issn.1009-6094.2020.0790
|
[13] |
Yu L J, Chen Z Q. Research on the green innovation diffusion mechanism of logistics enterprises based on evolutionary game. Operations Research and Management Science, 2018, 27 (12): 193–199. doi: 10.12005/orms.2018.0296
|
[14] |
Lu L, Zhang Y. Research on low-carbon logistics government supervision strategy based on evolutionary game. Mathematics in Practice and Theory, 2022, 52 (1): 64–84.
|
[15] |
Cai Y. Research on the influence of external pressure on the green management behavior of logistics enterprises. Thesis. Beijing: Beijing University of Posts and Telecommunications, 2021.
|
[16] |
Du J G, Wang M, Chen X Y, et al. Study on evolution of enterprise’s environmental behavior under public participation. Operations Research and Management Science, 2013, 22 (1): 244–251. doi: 10.3969/j.issn.1007-3221.2013.01.037
|
[17] |
Chen W D, Yang R Y. Government regulation, public participation and environmental governance satisfaction: An empirical analysis based on CGSS2015 data. Soft Science, 2018, 32 (11): 49–53. doi: 10.13956/j.ss.1001-8409.2018.11.11
|
[18] |
Fu J Y, Geng Y Y. Public participation, regulatory compliance and green development in China based on provincial panel data. Journal of Cleaner Production, 2019, 230: 1344–1353. doi: 10.1016/j.jclepro.2019.05.093
|
[19] |
Deng W J, Ma S H, Guan X. Duopoly enterprises’ strategies for consumer environmental awareness under carbon-emission-trading mechanism. Chinese Journal of Management Science, 2017, 25 (12): 17–26. doi: 10.16381/j.cnki.issn1003-207x.2017.12.003
|
[20] |
Ren H X. Focusing on the goal of carbon peaking and carbon neutrality, accelerating the green and low-carbon transformation of the logistics industry. China Logistics & Purchasing, 2021 (17): 11–12. doi: 10.16079/j.cnki.issn1671-6663.2021.17.002
|
[21] |
Wang Y L, Guo W B. Thoughts on promoting the construction of credit system under the collaborative governance model. Macroeconomic Management, 2018 (10): 52–57.
|
[22] |
Zhang G X, Zhang X T, Cheng S J, et al. Signaling game model of government and enterprise based on the subsidy policy for energy saving and emission reduction. Chinese Journal of Management Science, 2013, 21 (4): 129–136.
|
[23] |
Friedman D. Evolutionary games in economics. Econometrica, 1991, 59 (3): 637–666.
|
[24] |
Cui M. Tripartite evolutionary game analysis of environmental credit supervision under the background of collaborative governance. Systems Engineering:Theory & Practice, 2021, 41 (3): 713–726. doi: 10.12011/SETP2020-0480
|
[1] |
Yang W Y, Li T, Cao X S. Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: A panel data analysis of China’s provinces. Habitat International, 2015, 49 (5): 212–220. doi: 10.1016/j.habitatint.2015.05.030
|
[2] |
Ma J, Liu Z L, Chai Y W. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China. Habitat International, 2015, 47 (12): 1–10. doi: 10.1016/j.habitatint.2014.12.007
|
[3] |
Li C, Zan D L. An empirical study on carbon emission measurement and decomposition model of my country’s logistics and transportation industry. Resource Development & Market, 2015, 31 (10): 1197–1199, 1213. doi: 10.3969/j.issn.1005-8141.2015.10.009
|
[4] |
Wang F Z, Shen Z Z. Research on substitution utility and urbanization utility of energy consumption in logistics industry. Chinese Journal of Management Science, 2016, 24 (9): 45–52. doi: 10.16381/j.cnki.issn1003-207x.2016.09.006
|
[5] |
Yang G H. System dynamics analysis of low-carbon logistics development. Logistics Sci-Tech, 2012, 35 (12): 32–35. doi: 10.3969/j.issn.1002-3100.2012.12.011
|
[6] |
Royer S J, Ferrón S, Wilson S T, et al. Production of methane and ethylene from plastic in the environment. PLoS ONE, 2018, 13 (8): e0200574. doi: 10.1371/journal.pone.0200574
|
[7] |
Zhai Y P. Greening of express packaging. China Logistics & Purchasing, 2016, 1: 47–48.
|
[8] |
Qu W X, Ma M Q, Miao Z M. Research on the problems and countermeasures of express green packaging. China Storage & Transport, 2022 (4): 155–157. doi: 10.3969/j.issn.1005-0434.2022.04.076
|
[9] |
Yang F H, Pan X. Analysis of the development path of express packaging under the trend of green logistics. China Logistics & Purchasing, 2021 (23): 76–77. doi: 10.16079/j.cnki.issn1671-6663.2021.23.042
|
[10] |
Li L H, Huang J P, Li L J, et al. System model and simulation of logistics cluster based on the synergistic network. Systems Engineering, 2022, 40 (2): 98–108.
|
[11] |
Van Dender K. Energy policy in transport and transport policy. Energy Policy, 2009, 37 (10): 3854–3862. doi: 10.1016/j.enpol.2009.07.008
|
[12] |
Yang Y, Xu X Y. Research on the evolution of low-carbon behavior of logistics enterprises considering carbon tax policy. Journal of Safety and Environment, 2021, 21 (4): 1750–1758. doi: 10.13637/j.issn.1009-6094.2020.0790
|
[13] |
Yu L J, Chen Z Q. Research on the green innovation diffusion mechanism of logistics enterprises based on evolutionary game. Operations Research and Management Science, 2018, 27 (12): 193–199. doi: 10.12005/orms.2018.0296
|
[14] |
Lu L, Zhang Y. Research on low-carbon logistics government supervision strategy based on evolutionary game. Mathematics in Practice and Theory, 2022, 52 (1): 64–84.
|
[15] |
Cai Y. Research on the influence of external pressure on the green management behavior of logistics enterprises. Thesis. Beijing: Beijing University of Posts and Telecommunications, 2021.
|
[16] |
Du J G, Wang M, Chen X Y, et al. Study on evolution of enterprise’s environmental behavior under public participation. Operations Research and Management Science, 2013, 22 (1): 244–251. doi: 10.3969/j.issn.1007-3221.2013.01.037
|
[17] |
Chen W D, Yang R Y. Government regulation, public participation and environmental governance satisfaction: An empirical analysis based on CGSS2015 data. Soft Science, 2018, 32 (11): 49–53. doi: 10.13956/j.ss.1001-8409.2018.11.11
|
[18] |
Fu J Y, Geng Y Y. Public participation, regulatory compliance and green development in China based on provincial panel data. Journal of Cleaner Production, 2019, 230: 1344–1353. doi: 10.1016/j.jclepro.2019.05.093
|
[19] |
Deng W J, Ma S H, Guan X. Duopoly enterprises’ strategies for consumer environmental awareness under carbon-emission-trading mechanism. Chinese Journal of Management Science, 2017, 25 (12): 17–26. doi: 10.16381/j.cnki.issn1003-207x.2017.12.003
|
[20] |
Ren H X. Focusing on the goal of carbon peaking and carbon neutrality, accelerating the green and low-carbon transformation of the logistics industry. China Logistics & Purchasing, 2021 (17): 11–12. doi: 10.16079/j.cnki.issn1671-6663.2021.17.002
|
[21] |
Wang Y L, Guo W B. Thoughts on promoting the construction of credit system under the collaborative governance model. Macroeconomic Management, 2018 (10): 52–57.
|
[22] |
Zhang G X, Zhang X T, Cheng S J, et al. Signaling game model of government and enterprise based on the subsidy policy for energy saving and emission reduction. Chinese Journal of Management Science, 2013, 21 (4): 129–136.
|
[23] |
Friedman D. Evolutionary games in economics. Econometrica, 1991, 59 (3): 637–666.
|
[24] |
Cui M. Tripartite evolutionary game analysis of environmental credit supervision under the background of collaborative governance. Systems Engineering:Theory & Practice, 2021, 41 (3): 713–726. doi: 10.12011/SETP2020-0480
|