ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry 04 August 2022

Boosting photocatalytic Suzuki coupling reaction over Pd nanoparticles by regulating Pd/MOF interfacial electron transfer

Cite this:
https://doi.org/10.52396/JUSTC-2022-0063
More Information
  • Author Bio:

    Zi-Xuan Sun received his bachelor’s degree from Nankai University. He is currently a graduate student at the University of Science and Technology of China. His current research interests include metal-organic frameworks (MOFs) and photocatalytic organic reactions

    Hai-Long Jiang received his Ph.D. degree from the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 2008, and worked at AIST (Japan) as an AIST and JSPS fellow from 2008 to 2011. After postdoctoral study at Texas A&M University (USA), he joined the faculty of the University of Science and Technology of China in 2013. He has published more than 170 papers with over 31000 citations (H-index 88). His main research interest is the development of crystalline porous and nanostructured materials, combining coordination chemistry with nanoscience for the advancement of energy- and environment-related catalysis

  • Corresponding author: E-mail: jianglab@ustc.edu.cn
  • Received Date: 06 April 2022
  • Accepted Date: 06 May 2022
  • Available Online: 04 August 2022
  • Palladium-catalyzed C-C coupling reactions are of significant importance, but they often require harsh conditions. Herein, we report an interface-regulated photocatalytic Suzuki coupling reaction over Pd nanoparticles supported on a metal-organic framework (MOF), ZIF-8. Two Pd/MOFs were synthesized, PdPVP/ZIF-8 and Pd/ZIF-8, which have similar Pd sizes and loading amounts, except that the former contains poly(vinylpyrrolidone) (PVP) as a surfactant. The diffuse-reflectance infrared Fourier transform of CO adsorption (CO-DRIFT) indicates that Pd/ZIF-8 represents a more negative electronic state of Pd than PdPVP/ZIF-8. In the photocatalytic Suzuki coupling reaction between iodobenzene and phenylboronic acid, Pd/ZIF-8 exhibits excellent performance (99.1% yield), much better than that of PdPVP/ZIF-8 (57.9% yield). Moreover, Pd/ZIF-8 is highly stable and shows broad substrate scope for this reaction. The superior activity of Pd/ZIF-8 can be attributed to sufficient electron transfer between the MOFs and Pd nanoparticles in the absence of an interfacial surfactant. This work provides new insights into a Pd-catalyzed C-C coupling reaction involving photocatalysis and interfacial electron transfer.
    Interfacial electron transfer determines the Pd photocatalytic activity in Pd/ZIF-8.
    Palladium-catalyzed C-C coupling reactions are of significant importance, but they often require harsh conditions. Herein, we report an interface-regulated photocatalytic Suzuki coupling reaction over Pd nanoparticles supported on a metal-organic framework (MOF), ZIF-8. Two Pd/MOFs were synthesized, PdPVP/ZIF-8 and Pd/ZIF-8, which have similar Pd sizes and loading amounts, except that the former contains poly(vinylpyrrolidone) (PVP) as a surfactant. The diffuse-reflectance infrared Fourier transform of CO adsorption (CO-DRIFT) indicates that Pd/ZIF-8 represents a more negative electronic state of Pd than PdPVP/ZIF-8. In the photocatalytic Suzuki coupling reaction between iodobenzene and phenylboronic acid, Pd/ZIF-8 exhibits excellent performance (99.1% yield), much better than that of PdPVP/ZIF-8 (57.9% yield). Moreover, Pd/ZIF-8 is highly stable and shows broad substrate scope for this reaction. The superior activity of Pd/ZIF-8 can be attributed to sufficient electron transfer between the MOFs and Pd nanoparticles in the absence of an interfacial surfactant. This work provides new insights into a Pd-catalyzed C-C coupling reaction involving photocatalysis and interfacial electron transfer.
    • PdPVP/ZIF-8 and Pd/ZIF-8 were precisely synthesized with similar Pd sizes and loadings, providing models for investigating the metal-support interfacial effect.
    • A photocatalytic Suzuki coupling reaction was performed with PdPVP/ZIF-8 (57.9% yield) and Pd/ZIF-8 (99.1% yield) in 5 h, showing the advantages of Pd/ZIF-8 without surfactants in the Pd-MOF interface.
    • Control experiments and characterizations confirmed the photocatalytic mechanism and further concluded that Pd/ZIF-8 had better interfacial electron transfer than that of PdPVP/ZIF-8.

  • loading
  • [1]
    Miyaura N, Suzuki, A. Stereoselective synthesis of arylated (E) -alkenes by the reaction of alk-1 -enylboranes with aryl halides in the presence of palladium catalyst. J. C. S. Chem. Comm., 1979: 866–867. doi: 10.1039/C39790000866
    [2]
    Miyaura N, Yamada K, Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20 (36): 3437–3440. doi: 10.1016/S0040-4039(01)95429-2
    [3]
    Buchwald S L. Cross coupling. Acc. Chem. Res., 2008, 41 (11): 1439. doi: 10.1021/ar8001798
    [4]
    Wang F, Mielby J, Richter F H, et al. A polyphenylene support for Pd catalysts with exceptional catalytic activity. Angew. Chem. Int. Ed., 2014, 53 (33): 8645–8648. doi: 10.1002/anie.201404912
    [5]
    Sarina S, Zhu H Y, Xiao Q, et al. Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew. Chem. Int. Ed., 2014, 53 (11): 2935–2940. doi: 10.1002/anie.201308145
    [6]
    Jin Z, Xiao M D, Bao Z H, et al. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. Angew. Chem. Int. Ed., 2012, 51 (26): 6406–6410. doi: 10.1002/anie.201106948
    [7]
    Wang Y Q, Wang, C T, Wang L X, et al. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc. Chem. Res., 2021, 54 (11): 2579–2590. doi: 10.1021/acs.accounts.1c00074
    [8]
    Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev., 2013, 42 (16): 6593–6604. doi: 10.1039/C3CS60067J
    [9]
    van Deelen T W, Hernández Mejía C, de Jong K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal., 2019, 2 (11): 955–970. doi: 10.1038/s41929-019-0364-x
    [10]
    Nilsson Pingel T, Jørgensen M, Yankovich A B, et al. Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat. Commun., 2018, 9 (1): 2722. doi: 10.1038/s41467-018-05055-1
    [11]
    Huang J, He S, Goodsell J L, et al. Manipulating atomic structures at the Au/TiO2 interface for O2 activation. J. Am. Chem. Soc., 2020, 142 (14): 6456–6460. doi: 10.1021/jacs.9b13453
    [12]
    Komanoya T, Kinemura T, Kita Y, et al. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc., 2017, 139 (33): 11493–11499. doi: 10.1021/jacs.7b04481
    [13]
    Wang H, Wang L, Lin D, et al. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal., 2021, 4 (5): 418–424. doi: 10.1038/s41929-021-00611-3
    [14]
    Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341 (6149): 1230444. doi: 10.1126/science.1230444
    [15]
    Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43 (16): 5415–5418. doi: 10.1039/C4CS90059F
    [16]
    Li H, Li L B, Lin R B, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1 (1): 100006. doi: 10.1016/j.enchem.2019.100006
    [17]
    Yang Q H, Xu Q, Jiang H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev., 2017, 46 (15): 4774–4808. doi: 10.1039/C6CS00724D
    [18]
    Li L Y, Li Z X, Yang W J, et al. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem, 2021, 7 (3): 686–698. doi: 10.1016/j.chempr.2020.11.023
    [19]
    Kolobov N, Goesten M G, Gascon J. Metal-organic frameworks: molecules or semiconductors in photocatalysis? Angew. Chem. Int. Ed., 2021, 60 (50): 26038–26052. doi: 10.1002/anie.202106342
    [20]
    Xiao J D, Han L L, Luo J, et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew. Chem. Int. Ed., 2018, 57 (4): 1103–1107. doi: 10.1002/anie.201711725
    [21]
    Xu M L, Li D D, Sun K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem. Int. Ed., 2021, 60 (30): 16372–16376. doi: 10.1002/anie.202104219
    [22]
    Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 10186–10191. doi: 10.1073/pnas.0602439103
    [23]
    Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed., 2006, 45 (10): 1557–1559. doi: 10.1002/anie.200503778
    [24]
    Li L Y, Yang W J, Yang Q H, et al. Accelerating chemo- and regioselective hydrogenation of alkynes over bimetallic nanoparticles in a metal–organic framework. ACS Catal., 2020, 10 (14): 7753–7762. doi: 10.1021/acscatal.0c00177
    [25]
    Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J. Am. Chem. Soc., 2015, 137 (42): 13440–13443. doi: 10.1021/jacs.5b08773
    [26]
    Pei L, Li T Z, Yuan Y J, et al. Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem. Commun., 2019, 55 (78): 11754–11757. doi: 10.1039/C9CC05485E
    [27]
    Lo W S, Chou L Y, Young A P, et al. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chem. Mater., 2021, 33 (6): 1946–1953. doi: 10.1021/acs.chemmater.0c03007
    [28]
    Hayyan M, Hashim M A, AlNashef I M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116 (5): 3029–3085. doi: 10.1021/acs.chemrev.5b00407
    [29]
    htarev D S, Shtareva A V, Blokh A I, et al. On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger. Appl. Phys. A, 2017, 123 (9): 602. doi: 10.1007/s00339-017-1193-x
    [30]
    Luo S Q, Ren X H, Lin H W, et al. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem. Sci, 2021, 12 (16): 5701–5719. doi: 10.1039/d1sc00064k
    [31]
    Prajapati P K, Saini S, Jain S L. Nickel mediated palladium free photocatalytic Suzuki-coupling reaction under visible light irradiation. J. Mater. Chem. A, 2020, 8 (10): 5246–5254. doi: 10.1039/C9TA13801C
    [32]
    Wang Z J, Ghasimi S, Landfester K, et al. Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem. Mater., 2015, 27 (6): 1921–1924. doi: 10.1021/acs.chemmater.5b00516
    [33]
    MacQuarrie S, Horton J H, Barnes J, et al. Visual observation of redistribution and dissolution of palladium during the Suzuki-Miyaura reaction. Angew. Chem. Int. Ed., 2008, 47 (17): 3279–3282. doi: 10.1002/anie.200800153
    [34]
    Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev., 2015, 44: 2893–2939. doi: 10.1039/C5CS00064E
    [35]
    Avci C, Imaz I, Carne-Sanchez A, et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem., 2017, 10 (1): 78–84. doi: 10.1038/nchem.2875
    [36]
    Xiao J D, Shang Q C, Xiong Y J, et al. Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem. Int. Ed., 2016, 55: 9389–9393. doi: 10.1002/anie.201603990
    [37]
    Liu H, Xu C Y, Li D D, et al. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed., 2018, 57 (19): 5379–5383. doi: 10.1002/anie.201800320
  • 加载中

Catalog

    Figure  1.  (a) Powder XRD patterns of simulated ZIF-8 and as-synthesized ZIF-8, PdPVP/ZIF-8, and Pd/ZIF-8. (b) SEM image of ZIF-8. (c–e) TEM images for (c) PdPVP nanoparticles, (d) PdPVP/ZIF-8, and (e) Pd/ZIF-8 . Insets are the size distributions of Pd nanoparticles. (f) IR spectra of ZIF-8, PdPVP/ZIF-8, and Pd/ZIF-8.

    Figure  2.  (a) N2 sorption curves and (b) UV-vis spectra for ZIF-8, PdPVP/ZIF-8, and Pd/ZIF-8. (c) Mott-Schottky plots for ZIF-8. (d) DRIFT spectra of CO adsorbed on Pd for PdPVP/ZIF-8 and Pd/ZIF-8.

    Figure  3.  (a) Time-dependent yields of biphenyl in reactions of PdPVP/ZIF-8 and Pd/ZIF-8 (the error bars represent the relative deviation obtained from parallel experiments). (b, c) Recycling performance of (b) Pd/ZIF-8 and (c) PdPVP/ZIF-8. (d) Comparison of powder XRD patterns of PdPVP/ZIF-8 and Pd/ZIF-8 before and after reaction. (e, f) TEM images of (e) PdPVP/ZIF-8 and (f) Pd/ZIF-8 after reaction (inset: size distribution of Pd nanoparticles).

    Figure  4.  (a) Relationship between yield and light intensity catalyzed by Pd/ZIF-8. (b) Proposed photocatalytic reaction mechanism.

    Figure  5.  (a) PL spectra of ZIF-8, PdPVP/ZIF-8, and Pd/ZIF-8. (b) Interfacial electron transfer between ZIF-8 and Pd nanoparticles.

    [1]
    Miyaura N, Suzuki, A. Stereoselective synthesis of arylated (E) -alkenes by the reaction of alk-1 -enylboranes with aryl halides in the presence of palladium catalyst. J. C. S. Chem. Comm., 1979: 866–867. doi: 10.1039/C39790000866
    [2]
    Miyaura N, Yamada K, Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20 (36): 3437–3440. doi: 10.1016/S0040-4039(01)95429-2
    [3]
    Buchwald S L. Cross coupling. Acc. Chem. Res., 2008, 41 (11): 1439. doi: 10.1021/ar8001798
    [4]
    Wang F, Mielby J, Richter F H, et al. A polyphenylene support for Pd catalysts with exceptional catalytic activity. Angew. Chem. Int. Ed., 2014, 53 (33): 8645–8648. doi: 10.1002/anie.201404912
    [5]
    Sarina S, Zhu H Y, Xiao Q, et al. Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew. Chem. Int. Ed., 2014, 53 (11): 2935–2940. doi: 10.1002/anie.201308145
    [6]
    Jin Z, Xiao M D, Bao Z H, et al. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. Angew. Chem. Int. Ed., 2012, 51 (26): 6406–6410. doi: 10.1002/anie.201106948
    [7]
    Wang Y Q, Wang, C T, Wang L X, et al. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc. Chem. Res., 2021, 54 (11): 2579–2590. doi: 10.1021/acs.accounts.1c00074
    [8]
    Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev., 2013, 42 (16): 6593–6604. doi: 10.1039/C3CS60067J
    [9]
    van Deelen T W, Hernández Mejía C, de Jong K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal., 2019, 2 (11): 955–970. doi: 10.1038/s41929-019-0364-x
    [10]
    Nilsson Pingel T, Jørgensen M, Yankovich A B, et al. Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat. Commun., 2018, 9 (1): 2722. doi: 10.1038/s41467-018-05055-1
    [11]
    Huang J, He S, Goodsell J L, et al. Manipulating atomic structures at the Au/TiO2 interface for O2 activation. J. Am. Chem. Soc., 2020, 142 (14): 6456–6460. doi: 10.1021/jacs.9b13453
    [12]
    Komanoya T, Kinemura T, Kita Y, et al. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc., 2017, 139 (33): 11493–11499. doi: 10.1021/jacs.7b04481
    [13]
    Wang H, Wang L, Lin D, et al. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal., 2021, 4 (5): 418–424. doi: 10.1038/s41929-021-00611-3
    [14]
    Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341 (6149): 1230444. doi: 10.1126/science.1230444
    [15]
    Zhou H C, Kitagawa S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43 (16): 5415–5418. doi: 10.1039/C4CS90059F
    [16]
    Li H, Li L B, Lin R B, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1 (1): 100006. doi: 10.1016/j.enchem.2019.100006
    [17]
    Yang Q H, Xu Q, Jiang H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev., 2017, 46 (15): 4774–4808. doi: 10.1039/C6CS00724D
    [18]
    Li L Y, Li Z X, Yang W J, et al. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem, 2021, 7 (3): 686–698. doi: 10.1016/j.chempr.2020.11.023
    [19]
    Kolobov N, Goesten M G, Gascon J. Metal-organic frameworks: molecules or semiconductors in photocatalysis? Angew. Chem. Int. Ed., 2021, 60 (50): 26038–26052. doi: 10.1002/anie.202106342
    [20]
    Xiao J D, Han L L, Luo J, et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew. Chem. Int. Ed., 2018, 57 (4): 1103–1107. doi: 10.1002/anie.201711725
    [21]
    Xu M L, Li D D, Sun K, et al. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem. Int. Ed., 2021, 60 (30): 16372–16376. doi: 10.1002/anie.202104219
    [22]
    Park K S, Ni Z, Côté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 10186–10191. doi: 10.1073/pnas.0602439103
    [23]
    Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed., 2006, 45 (10): 1557–1559. doi: 10.1002/anie.200503778
    [24]
    Li L Y, Yang W J, Yang Q H, et al. Accelerating chemo- and regioselective hydrogenation of alkynes over bimetallic nanoparticles in a metal–organic framework. ACS Catal., 2020, 10 (14): 7753–7762. doi: 10.1021/acscatal.0c00177
    [25]
    Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J. Am. Chem. Soc., 2015, 137 (42): 13440–13443. doi: 10.1021/jacs.5b08773
    [26]
    Pei L, Li T Z, Yuan Y J, et al. Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem. Commun., 2019, 55 (78): 11754–11757. doi: 10.1039/C9CC05485E
    [27]
    Lo W S, Chou L Y, Young A P, et al. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chem. Mater., 2021, 33 (6): 1946–1953. doi: 10.1021/acs.chemmater.0c03007
    [28]
    Hayyan M, Hashim M A, AlNashef I M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116 (5): 3029–3085. doi: 10.1021/acs.chemrev.5b00407
    [29]
    htarev D S, Shtareva A V, Blokh A I, et al. On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger. Appl. Phys. A, 2017, 123 (9): 602. doi: 10.1007/s00339-017-1193-x
    [30]
    Luo S Q, Ren X H, Lin H W, et al. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem. Sci, 2021, 12 (16): 5701–5719. doi: 10.1039/d1sc00064k
    [31]
    Prajapati P K, Saini S, Jain S L. Nickel mediated palladium free photocatalytic Suzuki-coupling reaction under visible light irradiation. J. Mater. Chem. A, 2020, 8 (10): 5246–5254. doi: 10.1039/C9TA13801C
    [32]
    Wang Z J, Ghasimi S, Landfester K, et al. Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem. Mater., 2015, 27 (6): 1921–1924. doi: 10.1021/acs.chemmater.5b00516
    [33]
    MacQuarrie S, Horton J H, Barnes J, et al. Visual observation of redistribution and dissolution of palladium during the Suzuki-Miyaura reaction. Angew. Chem. Int. Ed., 2008, 47 (17): 3279–3282. doi: 10.1002/anie.200800153
    [34]
    Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev., 2015, 44: 2893–2939. doi: 10.1039/C5CS00064E
    [35]
    Avci C, Imaz I, Carne-Sanchez A, et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem., 2017, 10 (1): 78–84. doi: 10.1038/nchem.2875
    [36]
    Xiao J D, Shang Q C, Xiong Y J, et al. Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem. Int. Ed., 2016, 55: 9389–9393. doi: 10.1002/anie.201603990
    [37]
    Liu H, Xu C Y, Li D D, et al. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed., 2018, 57 (19): 5379–5383. doi: 10.1002/anie.201800320

    Article Metrics

    Article views (902) PDF downloads(2184)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return