ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Astronomy 18 January 2023

Investigating Galactic cosmic rays with γ-ray astronomy

Cite this:
https://doi.org/10.52396/JUSTC-2021-0269
More Information
  • Author Bio:

    Ruizhi Yang is currently a Professor at the University of Science and Technology of China (USTC). He received his bachelor’s degree from USTC in 2007 and his Ph.D. degree in Astrophysics from the Purple Mountain Observatory, CAS in 2013. His research mainly focuses on high-energy astrophysics and γ-ray astronomy

  • Corresponding author: E-mail: yangrz@ustc.edu.cn
  • Received Date: 20 December 2021
  • Accepted Date: 15 June 2022
  • Available Online: 18 January 2023
  • Cosmic rays (CRs) are one of the most important components in the interstellar medium (ISM), and the origin of CRs remains a mystery. The diffusion of CRs in turbulent magnetic fields erases the information on the distribution of CR accelerators to a large extent. The energy dependent diffusion of CRs also significantly modifies the initial (acceleration) spectra of CRs. In this regard, γ-rays, the secondary products of interactions of CRs with gas and photons in the ISM, provide us with more information about the origin of CRs. More specifically, the γ-ray emissions associated with gas, can be used to study the distribution of CRs throughout the Galaxy; discrete γ-ray sources can elucidate the locations of individual CR accelerators. Here, the current status and prospects in these fields are reviewed.
    Due to the unprecedented sensitivity in the ultrahigh energy γ-ray band (red curve in lower panel), LHAASO (layout shown as the upper panel) will play a leading role in the cosmic ray study.
    Cosmic rays (CRs) are one of the most important components in the interstellar medium (ISM), and the origin of CRs remains a mystery. The diffusion of CRs in turbulent magnetic fields erases the information on the distribution of CR accelerators to a large extent. The energy dependent diffusion of CRs also significantly modifies the initial (acceleration) spectra of CRs. In this regard, γ-rays, the secondary products of interactions of CRs with gas and photons in the ISM, provide us with more information about the origin of CRs. More specifically, the γ-ray emissions associated with gas, can be used to study the distribution of CRs throughout the Galaxy; discrete γ-ray sources can elucidate the locations of individual CR accelerators. Here, the current status and prospects in these fields are reviewed.
    • γ-rays are an important tool to study cosmic rays (CRs).
    • γ-rays can be used to probe the CR accelerator and the CR distributions.
    • LHAASO and other future experiments will shed light on the origin of CRs.

  • loading
  • [1]
    Webber W R. A new estimate of the local interstellar energy density and ionization rate of Galactic cosmic cosmic rays. The Astrophysical Journal, 1998, 506: 329–334. doi: 10.1086/306222
    [2]
    McKee C F. Photoionization-regulated star formation and the structure of molecular clouds. The Astrophysical Journal, 1989, 345: 782. doi: 10.1086/167950
    [3]
    Silk J, Norman C. X-ray emission from pre-main-sequence stars, molecular clouds and star formation. The Astrophysical Journal, 1983, 272: L49–L53. doi: 10.1086/184115
    [4]
    Dalgarno A. The galactic cosmic ray ionization rate. Proceedings of the National Academy of Science, 2006, 103: 12269–12273. doi: 10.1073/pnas.0602117103
    [5]
    Wurster J, Bate M R, Price D J. The effect of extreme ionization rates during the initial collapse of a molecular cloud core. Monthly Notices of the Royal Astronomical Society, 2018, 476: 2063–2074. doi: 10.1093/mnras/sty392
    [6]
    Fan Y, Zhang B, Chang J. Electron/positron excesses in the cosmic ray spectrum and possible interpretations. International Journal of Modern Physics D, 2010, 19: 2011–2058. doi: 10.1142/S0218271810018268
    [7]
    Abraham J, Aglietta M, Aguirre I C, et al. Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nuclear Instruments and Methods in Physics Research A, 2004, 523: 50–95. doi: 10.1016/j.nima.2003.12.012
    [8]
    Abu-Zayyad T, Aida R, Allen M, et al. The surface detector array of the Telescope Array experiment. Nuclear Instruments and Methods in Physics Research A, 2012, 689: 87–97. doi: 10.1016/j.nima.2012.05.079
    [9]
    Bartoli B, Bernardini P, Bi X J, et al. Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D, 2011, 84: 022003. doi: 10.1103/PhysRevD.84.022003
    [10]
    Battiston R. The antimatter spectrometer (AMS-02): A particle physics detector in space. Nuclear Instruments and Methods in Physics Research A, 2008, 588: 227–234. doi: 10.1016/j.nima.2008.01.044
    [11]
    Chang J, Ambrosib G, An Q, et al. The DArk Matter Particle Explorer mission. Astroparticle Physics, 2017, 95: 6–24. doi: 10.1016/j.astropartphys.2017.08.005
    [12]
    Bartoli B, Bernardini P, Bi X J, et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D, 2015, 92: 092005. doi: 10.1103/PhysRevD.92.092005
    [13]
    Strong A W, Moskalenko I V. Propagation of cosmic-ray nucleons in the Galaxy. The Astrophysical Journal, 1998, 509: 212. doi: 10.1086/306470
    [14]
    Aartsen M G, Ackermann M, Adams J, et al. The IceCube Neutrino Observatory: Instrumentation and online systems. Journal of Instrumentation, 2017, 12: P03012. doi: 10.1088/1748-0221/12/03/P03012
    [15]
    Ageron M, Aguilar J A, Al Samarai I, et al. ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research A, 2011, 656: 11–38. doi: 10.1016/j.nima.2011.06.103
    [16]
    Ballet J, Burnett T H, Digel S W, et al. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. 2020. https://arxiv.org/abs/2005.11208. Accessed October 10, 2021.
    [17]
    Atwood W B, Abdo A A, Ackermann M, et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescopemission. The Astrophysical Journal, 2009, 697: 1071–1102. doi: 10.1088/0004-637X/697/2/1071
    [18]
    Tavani M, Barbiellini G, Argan A, et al. The AGILE Mission. Astronomy and Astrophysics, 2009, 502: 995–1013. doi: 10.1051/0004-6361/200810527
    [19]
    Gaisser T K. Cosmic Rays and Particle Physics. Cambridge, UK: Cambridge University Press, 1991.
    [20]
    Amenomori M, Bai Z W, Cao Z, et al. Status and performance of the AS array of the Tibet ASγ experiment. AIP Conference Proceedings, 1991, 220: 257–264. doi: 10.1063/1.40305
    [21]
    Abeysekara A U, Alfaro R, Alvarez C, et al. Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 2013, 50: 26–32. doi: 10.1016/j.astropartphys.2013.08.002
    [22]
    Di Sciascio G. The LHAASO experiment: From gamma-ray astronomy to cosmic rays. Nuclear and Particle Physics Proceedings, 2016, 279–281: 166–173. doi: 10.1016/j.nuclphysbps.2016.10.024
    [23]
    Hinton J A, HESS Collaboration. The status of the HESS project. New Astronomy Reviews, 2004, 48: 331–337. doi: 10.1016/j.newar.2003.12.004
    [24]
    Lorenz E, MAGIC Collaboration. Status of the 17 m Ø MAGIC telescope. New Astronomy Reviews, 2004, 39: 339–344. doi: 10.1016/j.newar.2003.12.059
    [25]
    Weekes T C, Badran H, Biller S D, et al. VERITAS: the Very Energetic Radiation Imaging Telescope Array System. Astroparticle Physics, 2002, 17: 221–243. doi: 10.1016/S0927-6505(01)00152-9
    [26]
    The CTA Consortium. Science with the Cherenkov Telescope Array. Singapore: World Scientific, 2019.
    [27]
    He H, LHAASO Collaboration. Design of the LHAASO detectors. Radiation Detection Technology and Methods, 2018, 2: 7. doi: 10.1007/s41605-018-0037-3
    [28]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Observations of the Crab nebula with HESS. Astronomy and Astrophysics, 2006, 457: 899–915. doi: 10.1051/0004-6361:20065351
    [29]
    Aleksić J, Ansoldi S, Antonelli L A, et al. The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, 2016, 72: 76–94. doi: 10.1016/j.astropartphys.2015.02.005
    [30]
    Bell A R. The acceleration of cosmic rays in shock fronts: I. Monthly Notices of the Royal Astronomical Society, 1978, 182: 147–156. doi: 10.1093/mnras/182.2.147
    [31]
    Drury L O. Origin of cosmic rays. Astroparticle Physics, 2012, 39–40: 52–60. doi: 10.1016/j.astropartphys.2012.02.006
    [32]
    Ackermann M, Ajello M, Allafort A, et al. Detection of the characteristic pion-decay signature in supernova remnants. Science, 2013, 339: 807–811. doi: 10.1126/science.1231160
    [33]
    Giuliani A, Cardillo M, Tavani M, et al. Neutral pion emission from accelerated protons in the supernova remnant W44. The Astrophysical Journal Letters, 2011, 742: L30. doi: 10.1088/2041-8205/742/2/L30
    [34]
    Zirakashvili V N, Aharonian F. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astronomy and Astrophysics, 2007, 465: 695–702. doi: 10.1051/0004-6361:20066494
    [35]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astronomy and Astrophysics, 2006, 449: 223–242. doi: 10.1051/0004-6361:20054279
    [36]
    H.E.S.S. Collaboration, Abdalla H, Abramowski A, et al. The H.E.S.S. Galactic plane survey. Astronomy and Astrophysics, 2018, 612: A3. doi: 10.1051/0004-6361/201732098
    [37]
    Ahnen M L, Ansoldi S, Antonelli L A, et al. A cut-off in the TeV gamma-ray spectrum of the SNR. Monthly Notices of the Royal Astronomical Society, 2017, 472: 2956–2962. doi: 10.1093/mnras/stx2079
    [38]
    Aharonian F, Yang R, de Oña Wilhelmi E. Massive stars as major factories of Galactic cosmic rays. Nature Astronomy, 2019, 3: 561–567. doi: 10.1038/s41550-019-0724-0
    [39]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astronomy and Astrophysics, 2007, 464: 235–243. doi: 10.1051/0004-6361:20066381
    [40]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. H.E.S.S. Observations of the supernova remnant RX J0852.0-4622: Shell-type morphology and spectrum of a widely extended very high energy gamma-ray source. The Astrophysical Journal, 2007, 661: 236–249. doi: 10.1086/512603
    [41]
    H.E.S.S. Collaboration, Abramowski A, Acero F, et al. A new SNR with TeV shell-type morphology: HESS J1731-347. Astronomy and Astrophysics, 2011, 531: A81. doi: 10.1051/0004-6361/201016425
    [42]
    HESS Collaboration, Abramowski A, Aharonian F, et al. HESS J1640-465: An exceptionally luminous TeV γ-ray supernova remnant. Monthly Notices of the Royal Astronomical Society, 2014, 439: 2828–2836. doi: 10.1093/mnras/stu139
    [43]
    Archambault S, Archer A, Benbow W, et al. Gamma-ray observations of Tycho’s supernova remnant with VERITAS and Fermi. The Astrophysical Journal, 2017, 836: 23. doi: 10.3847/1538-4357/836/1/23
    [44]
    Acero F, Aharonian F, Akhperjanian A G, et al. First detection of VHE γ-rays from SN 1006 by HESS. Astronomy and Astrophysics, 2010, 516: A62. doi: 10.1051/0004-6361/200913916
    [45]
    Lagage P O, Cesarsky C J. The maximum energy of cosmic rays accelerated by supernova shocks. Astronomy and Astrophysics, 1983, 125: 249–257.
    [46]
    Bell A R, Matthews J H, Blundell K M. Cosmic ray acceleration by shocks: Spectral steepening due to turbulent magnetic field amplification. Monthly Notices of the Royal Astronomical Society, 2019, 488: 2466–2472. doi: 10.1093/mnras/stz1805
    [47]
    Malkov M A, Aharonian F A. Cosmic-ray spectrum steepening in supernova remnants. I. Loss-free self-similar solution. The Astrophysical Journal, 2019, 881: 2. doi: 10.3847/1538-4357/ab2c01
    [48]
    Hanusch A, Liseykina T V, Malkov M, et al. Steepening of cosmic-ray spectra in shocks with varying magnetic field direction. The Astrophysical Journal, 2019, 885: 11. doi: 10.3847/1538-4357/ab426d
    [49]
    Caprioli D, Haggerty C C, Blasi P. Kinetic simulations of cosmic-ray-modified shocks. II. Particle spectra. The Astrophysical Journal, 2020, 905: 2. doi: 10.3847/1538-4357/abbe05
    [50]
    Schure K M, Bell A R. Cosmic ray acceleration in young supernova remnants. Monthly Notices of the Royal Astronomical Society, 2013, 435: 1174–1185. doi: 10.1093/mnras/stt1371
    [51]
    Aharonian F, Akhperjanian A, Barrio J, et al. Evidence for TeV gamma ray emission from Cassiopeia A. Astronomy and Astrophysics, 2001, 370: 112–120. doi: 10.1051/0004-6361:20010243
    [52]
    Acciari V A, Aliu E, Arlen T, et al. Observations of the shell-type supernova remnant cassiopeia a at TeV energies with veritas. The Astrophysical Journal, 2010, 714: 163–169. doi: 10.1088/0004-637X/714/1/163
    [53]
    Acciari V A, Aliu E, Arlen T, et al. Discovery of TeV gamma-ray emission from Tycho’s Supernova Remnant. The Astrophysical Journal Letters, 2011, 730: L20. doi: 10.1088/2041-8205/730/2/L20
    [54]
    H.E.S.S. Collaboration, Abramowski A, Aharonian F, et al. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S. Monthly Notices of the Royal Astronomical Society, 2014, 441: 790–799. doi: 10.1093/mnras/stu459
    [55]
    Reynolds S P, Borkowski K J, Green D A, et al. The youngest Galactic supernova remnant: G1.9+0.3. The Astrophysical Journal, 2008, 680: L41. doi: 10.1086/589570
    [56]
    Kafexhiu E, Aharonian F, Taylor A M, et al. Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies. 2014. https://arxiv.org/abs/1406.7369. Accessed October 10, 2021.
    [57]
    Binns W R, Israel M H, Christian E R, et al. Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science, 2016, 352: 677–680. doi: 10.1126/science.aad6004
    [58]
    Acero F, Ackermann M, Ajello M, et al. Development of the model of galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. The Astrophysical Journal Supplement Series, 2016, 223: 26. doi: 10.3847/0067-0049/223/2/26
    [59]
    Yang R, Aharonian F, Evoli C. Radial distribution of the diffuse γ-ray emissivity in the Galactic disk. Physical Rewiew D, 2016, 93: 123007. doi: 10.1103/PhysRevD.93.123007
    [60]
    Parizot E, Marcowith A, van der Swaluw E, et al. Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astronomy and Astrophysics, 2004, 424: 747–760. doi: 10.1051/0004-6361:20041269
    [61]
    Bykov A M. Nonthermal particles and photons in starburst regions and superbubbles. The Astronomy and Astrophysics Review, 2014, 22: 77. doi: 10.1007/s00159-014-0077-8
    [62]
    Cesarsky C J, Montmerle T. Gamma rays from active regions in the galaxy: The possible contribution of stellar winds. Space Sci. Rev., 1983, 36: 173–193. doi: 10.1007/BF00167503
    [63]
    Ackermann M, Ajello M, Allafort A, et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science, 2011, 334: 1103. doi: 10.1126/science.1210311
    [64]
    Yang R, Aharonian F. Diffuse γ-ray emission near the young massive cluster NGC 3603. Astronomy and Astrophysics, 2017, 600: A107. doi: 10.1051/0004-6361/201630213
    [65]
    Saha L, Domínguez A, Tibaldo L, et al. Morphological and spectral study of 4FGL J1115.1−6118 in the region of the young massive stellar cluster NGC 3603. The Astrophysical Journal, 2020, 897: 131. doi: 10.3847/1538-4357/ab9ac2
    [66]
    Abramowski A, Acero F, Aharonian F, et al. Discovery of extended VHE γ-ray emission from the vicinity of the young massive stellar cluster Westerlund 1. Astronomy and Astrophysics, 2012, 537: A114. doi: 10.1051/0004-6361/201117928
    [67]
    Yang R, de Oña Wilhelmi E, Aharonian F. Diffuse γ-ray emission in the vicinity of young star cluster Westerlund 2. Astronomy and Astrophysics, 2018, 611: A77. doi: 10.1051/0004-6361/201732045
    [68]
    Katsuta J, Uchiyama Y, Funk S. Extended gamma-ray emission from the G25.0+0.0 region: A star-forming region powered by the newly found OB association? The Astrophysical Journal, 2017, 839: 129. doi: 10.3847/1538-4357/aa6aa3
    [69]
    Sun X, Yang R, Wang X. Diffuse γ-ray emission from the vicinity of young massive star cluster RSGC 1. Monthly Notices of the Royal Astronomical Society, 2020, 494: 3405–3412. doi: 10.1093/mnras/staa947
    [70]
    Sun X, Yang R, Liang Y, et al. Diffuse γ-ray emission toward the massive star-forming region, W40. Astronomy and Astrophysics, 2020, 639: A80. doi: 10.1051/0004-6361/202037580
    [71]
    Yang R, Wang Y. The diffuse gamma-ray emission toward the Galactic mini starburst W43. Astronomy and Astrophysics, 2020, 640: A60. doi: 10.1051/0004-6361/202037518
    [72]
    Popescu C C, Yang R, Tuffs R J, et al. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics. Monthly Notices of the Royal Astronomical Society, 2017, 470: 2539–2558. doi: 10.1093/mnras/stx1282
    [73]
    Abramowski A, Aharonian F, Ait Benkhali F, et al. Discovery of the hard spectrum VHE γ-ray source HESS J1641-463. The Astrophysical Journal Letters, 2014, 794: L1. doi: 10.1088/2041-8205/794/1/L1
    [74]
    HESS Collaboration, et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 2016, 531: 476–479. doi: 10.1038/nature17147
    [75]
    Aguilar M, Aisa D, Alpat B, et al. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station. Physical Review Letters, 2015, 114: 171103. doi: 10.1103/PhysRevLett.114.171103
    [76]
    Abeysekara A U, Albert A, Alfaro R, et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science, 2017, 358: 911–914. doi: 10.1126/science.aan4880
    [77]
    Yang R, Liu B. On the surface brightness radial profile of the extended γ-ray sources. Science China Physics, Mechanics, and Astronomy, 2022, 65: 219511. doi: 10.1007/s11433-021-1777-4
    [78]
    Cao Z, Aharonian F A, An Q, et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature, 2021, 594: 33–36. doi: 10.1038/s41586-021-03498-z
    [79]
    Gabici S, Aharonian F A, Blasi P. Gamma rays from molecular clouds. Astrophysics and Space Science, 2007, 309: 365–371. doi: 10.1007/s10509-007-9427-6
    [80]
    Aharonian F A. Gamma rays from molecular clouds. Space Science Reviews, 2001, 99: 187–196. doi: 10.1023/A:1013845015364
    [81]
    Neronov A, Semikoz D, Taylor A. Low-energy break in the spectrum of Galactic cosmic rays. Phys. Rev. Lett., 2012, 108: 051105. doi: 10.1103/PhysRevLett.108.051105
    [82]
    Yang R, de Oña Wilhelmi E, Aharonian F. Probing cosmic rays in nearby giant molecular clouds with the Fermi Large Area Telescope. Astronomy and Astrophysics, 2014, 566: A142. doi: 10.1051/0004-6361/201321044
    [83]
    Planck Collaboration. Planck 2015 results. X. Diffuse component separation: Foreground maps. Astronomy and Astrophysics, 2016, 594: A10. doi: 10.1051/0004-6361/201525967
    [84]
    Adriani O, Barbarino G C, Bazilevskaya G A, et al. PAMELA measurements of cosmic-ray proton and helium spectra. Science, 2011, 332: 69. doi: 10.1126/science.1199172
    [85]
    Green D A. Constraints on the distribution of supernova remnants with Galactocentric radius. Monthly Notices of the Royal Astronomical Society, 2015, 454: 1517–1524. doi: 10.1093/mnras/stv1885
    [86]
    Bronfman L, Casassus S, May J, et al. The radial distribution of OB star formation in the Galaxy. Astronomy and Astrophysics, 2000, 358: 521–534. doi: 10.48550/arXiv.astro-ph/0006104
    [87]
    Strong A W, Moskalenko I V, Ptuskin V S. Cosmic-ray propagation and interactions in the Galaxy. Annual Review of Nuclear and Particle Science, 2007, 57: 285–327. doi: 10.1146/annurev.nucl.57.090506.123011
    [88]
    Recchia S, Blasi P, Morlino G. On the radial distribution of Galactic cosmic rays. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462: L88–L92. doi: 10.1093/mnrasl/slw136
    [89]
    Guo Y Q, Yuan Q. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97: 063008. doi: 10.1103/PhysRevD.97.063008
    [90]
    Abdo A A, Allen B, Aune T, et al. A measurement of the spatial distribution of diffuse TeV gamma-ray emission from the Galactic Plane with Milagro. The Astrophysical Journal, 2008, 688: 1078–1083. doi: 10.1086/592213
    [91]
    Amenomori M, Bao Y W, Bi X J, et al. First detection of sub-PeV diffuse gamma rays from the Galactic disk: Evidence for ubiquitous Galactic cosmic rays beyond PeV energies. Phys. Rev. Lett., 2021, 126: 141101. doi: 10.1103/PhysRevLett.126.141101
    [92]
    Yang R, Jones D I, Aharonian F. Fermi-LAT observations of the Sagittarius B complex. Astronomy and Astrophysics, 2015, 580: A90. doi: 10.1051/0004-6361/201425233
    [93]
    Aharonian F, Peron G, Yang R, et al. Probing the sea of galactic cosmic rays with Fermi-LAT. Phys. Rev. D, 2020, 101: 083018. doi: 10.1103/PhysRevD.101.083018
    [94]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Discovery of very-high-energy γ-rays from the Galactic Centre ridge. Nature, 2006, 439: 695–698. doi: 10.1038/nature04467
    [95]
    Rice T S, Goodman A A, Bergin E A, et al. A uniform catalog of molecular clouds in the Milky Way. The Astrophysical Journal, 2016, 822: 52. doi: 10.3847/0004-637X/822/1/52
    [96]
    Peron G, Aharonian F, Casanova S, et al. Probing the cosmic-ray density in the inner Galaxy. The Astrophysical Journal Letters, 2021, 907: L11. doi: 10.3847/2041-8213/abcaa9
    [97]
    Voisin F, Rowell G, Burton M G, et al. ISM gas studies towards the TeV PWN HESS J1825−137 and northern region. Monthly Notices of the Royal Astronomical Society, 2016, 458: 2813–2835. doi: 10.1093/mnras/stw473
    [98]
    Yang R. LHAASO and the origin of cosmic rays. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52: 229501. doi: 10.1360/SSPMA-2021-0172
    [99]
    H.E.S.S. Collaboration, Abdalla H, Aharonian F, et al. Particle transport within the pulsar wind nebula HESS J1825-137. Astronomy and Astrophysics, 2019, 621: A116. doi: 10.1051/0004-6361/201834335
    [100]
    Pintore F, Giuliani A, Belfiore A, et al. Scientific prospects for a mini-array of ASTRI telescopes: A γ-ray TeV data challenge. Journal of High Energy Astrophysics, 2020, 26: 83–94. doi: 10.1016/j.jheap.2020.03.002
    [101]
    Olivera-Nieto L, Mitchell A M W, Bernlöhr K, et al. Muons as a tool for background rejection in Imaging Atmospheric Cherenkov Telescope arrays. 2021. https://arxiv.org/abs/2111.12041. Accessed October 10, 2021
    [102]
    Ramaty R, Kozlovsky B, Lingenfelter R E. Nuclear gamma-rays from energetic particle interactions. The Astrophysical Journal Supplement Series, 1979, 40: 487–526. doi: 10.1086/190596
    [103]
    Murphy R J, Kozlovsky B, Kiener J, et al. Nuclear gamma-ray de-excitation lines and continuum from accelerated-particle interactions in solar flares. The Astrophysical Journal Supplement Series, 2009, 183: 142–155. doi: 10.1088/0067-0049/183/1/142
    [104]
    Liu B, Yang R, Aharonian F. Nuclear de-excitation lines as a probe of low-energy cosmic rays. Astronomy and Astrophysics, 2021, 646: A149. doi: 10.1051/0004-6361/202039977
    [105]
    De Angelis A, Tatischeff V, Grenier I A, et al. Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics. Journal of High Energy Astrophysics, 2018, 19: 1–106. doi: 10.1016/j.jheap.2018.07.001
    [106]
    McEnery J, Barrio J A, Agudo I, et al. All-sky medium energy gamma-ray observatory: Exploring the extreme multimessenger universe. 2019. https://arxiv.org/abs/1907.07558. Accessed October 10, 2021.
  • 加载中

Catalog

    Figure  1.  The layout of three arrays in LHAASO. The figure is from Ref. [27].

    Figure  2.  The one year LHASSO sensitivity for $ \gamma $-rays, compared with the sensitivities of other instruments. The sensitivities of other instruments are from Refs. [21, 26, 28, 29].

    Figure  3.  The differential spectrum of several TeV-bright SNRs; the data points are from Refs. [37, 3944]. The figure is from Ref. [38].

    Figure  4.  The differential luminosities of in extended regions around the star clusters Cyg OB2 (Cygnus Cocoon), Westerlund 1, Westerlund 2, NGC 3603, as well as in the Central Molecular Zone (CMZ) of the Galactic Centre assuming that CMZ is powered by CRs accelerated in Arches, Quintuplet and Nuclear clusters. The error bars contain both the statistical and systematic errors. The differential $ \gamma $-ray luminosities, $\dfrac{{\rm d}L}{{\rm d}E} = 4\pi {\rm d}^2 Ef(E)$. The luminosities of all sources have similar energy dependence close to $ E^{1.2} $ as shown in the curve. We also show the $ \gamma $-ray spectra expected from interactions of parent proton population with a spectrum of $E^{-2.3}{\rm e}^{-\tfrac{E}{E_b}}$ with $ E_b $ = 0.2 PeV and 1 PeV, respectively. The data points are from Ref. [38].

    Figure  5.  The CR proton radial distributions in the Cygnus Cocoon, Wd 1 Cocoon and CMZ above 10 TeV. For the Cygnus Cocoon, the energy density of protons above 10 TeV is derived from the extrapolation of the Fermi-LAT $ \gamma $-ray data to higher energies. The flux reported by the ARGO collaboration at 1 TeV supports the validity of this extrapolation. For comparison, the energy densities of CR protons above 10 TeV based on the measurements by AMS-02 are also shown in Ref. [75]. The figure is from Ref. [38].

    Figure  6.  The surface brightness profile of both the TeV halo (electron) and CR continuous injection case (1/r). The figure is from Ref. [77].

    Figure  7.  Top panel: The Fermi-LAT $ \gamma $-ray counts map above 1 GeV towards Orion A. Bottom panel: The Planck dust opacity ($ \tau_{353} $) map, which is proportional to the gas column density.

    Figure  8.  The derived CR spectrum in Orion A (shaded area) compared with the direct measurement of the CR spectrum from PAMELA (data points)[84]. The figure is from Ref. [82].

    Figure  9.  The derived $ \gamma $-ray emissivities per H atom (proportional to CR density) Galactocentric distributions compared with the distribution of SNRS[85] and OB stars[86]. The CR radial distributions are derived in Ref. [59].

    Figure  10.  The energy distribution of $ \gamma $-rays in the Sgr B complex. The data points are from Refs. [93, 94].

    Figure  11.  The derived CR density and index in different position of the Galaxy using GMCs in Ref. [93].

    Figure  12.  The significance map above 25 TeV from the LHAASO-KM2A observations on LHAASO J1825-1326. The green circle in the right bottom is the point spread function of LHAASO-KM2A. The white circles are the extensions of HESS J1825-137 at lower (large) and higher (smaller) energies. The purple circle is the extension of HESS J1826-130. The two black diamonds label the position of two pulsars while the cyan ellipse is the dense molecular gas clump identified in Ref. [97]. The figure is from Ref. [98].

    [1]
    Webber W R. A new estimate of the local interstellar energy density and ionization rate of Galactic cosmic cosmic rays. The Astrophysical Journal, 1998, 506: 329–334. doi: 10.1086/306222
    [2]
    McKee C F. Photoionization-regulated star formation and the structure of molecular clouds. The Astrophysical Journal, 1989, 345: 782. doi: 10.1086/167950
    [3]
    Silk J, Norman C. X-ray emission from pre-main-sequence stars, molecular clouds and star formation. The Astrophysical Journal, 1983, 272: L49–L53. doi: 10.1086/184115
    [4]
    Dalgarno A. The galactic cosmic ray ionization rate. Proceedings of the National Academy of Science, 2006, 103: 12269–12273. doi: 10.1073/pnas.0602117103
    [5]
    Wurster J, Bate M R, Price D J. The effect of extreme ionization rates during the initial collapse of a molecular cloud core. Monthly Notices of the Royal Astronomical Society, 2018, 476: 2063–2074. doi: 10.1093/mnras/sty392
    [6]
    Fan Y, Zhang B, Chang J. Electron/positron excesses in the cosmic ray spectrum and possible interpretations. International Journal of Modern Physics D, 2010, 19: 2011–2058. doi: 10.1142/S0218271810018268
    [7]
    Abraham J, Aglietta M, Aguirre I C, et al. Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nuclear Instruments and Methods in Physics Research A, 2004, 523: 50–95. doi: 10.1016/j.nima.2003.12.012
    [8]
    Abu-Zayyad T, Aida R, Allen M, et al. The surface detector array of the Telescope Array experiment. Nuclear Instruments and Methods in Physics Research A, 2012, 689: 87–97. doi: 10.1016/j.nima.2012.05.079
    [9]
    Bartoli B, Bernardini P, Bi X J, et al. Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D, 2011, 84: 022003. doi: 10.1103/PhysRevD.84.022003
    [10]
    Battiston R. The antimatter spectrometer (AMS-02): A particle physics detector in space. Nuclear Instruments and Methods in Physics Research A, 2008, 588: 227–234. doi: 10.1016/j.nima.2008.01.044
    [11]
    Chang J, Ambrosib G, An Q, et al. The DArk Matter Particle Explorer mission. Astroparticle Physics, 2017, 95: 6–24. doi: 10.1016/j.astropartphys.2017.08.005
    [12]
    Bartoli B, Bernardini P, Bi X J, et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D, 2015, 92: 092005. doi: 10.1103/PhysRevD.92.092005
    [13]
    Strong A W, Moskalenko I V. Propagation of cosmic-ray nucleons in the Galaxy. The Astrophysical Journal, 1998, 509: 212. doi: 10.1086/306470
    [14]
    Aartsen M G, Ackermann M, Adams J, et al. The IceCube Neutrino Observatory: Instrumentation and online systems. Journal of Instrumentation, 2017, 12: P03012. doi: 10.1088/1748-0221/12/03/P03012
    [15]
    Ageron M, Aguilar J A, Al Samarai I, et al. ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research A, 2011, 656: 11–38. doi: 10.1016/j.nima.2011.06.103
    [16]
    Ballet J, Burnett T H, Digel S W, et al. Fermi Large Area Telescope Fourth Source Catalog Data Release 2. 2020. https://arxiv.org/abs/2005.11208. Accessed October 10, 2021.
    [17]
    Atwood W B, Abdo A A, Ackermann M, et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescopemission. The Astrophysical Journal, 2009, 697: 1071–1102. doi: 10.1088/0004-637X/697/2/1071
    [18]
    Tavani M, Barbiellini G, Argan A, et al. The AGILE Mission. Astronomy and Astrophysics, 2009, 502: 995–1013. doi: 10.1051/0004-6361/200810527
    [19]
    Gaisser T K. Cosmic Rays and Particle Physics. Cambridge, UK: Cambridge University Press, 1991.
    [20]
    Amenomori M, Bai Z W, Cao Z, et al. Status and performance of the AS array of the Tibet ASγ experiment. AIP Conference Proceedings, 1991, 220: 257–264. doi: 10.1063/1.40305
    [21]
    Abeysekara A U, Alfaro R, Alvarez C, et al. Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 2013, 50: 26–32. doi: 10.1016/j.astropartphys.2013.08.002
    [22]
    Di Sciascio G. The LHAASO experiment: From gamma-ray astronomy to cosmic rays. Nuclear and Particle Physics Proceedings, 2016, 279–281: 166–173. doi: 10.1016/j.nuclphysbps.2016.10.024
    [23]
    Hinton J A, HESS Collaboration. The status of the HESS project. New Astronomy Reviews, 2004, 48: 331–337. doi: 10.1016/j.newar.2003.12.004
    [24]
    Lorenz E, MAGIC Collaboration. Status of the 17 m Ø MAGIC telescope. New Astronomy Reviews, 2004, 39: 339–344. doi: 10.1016/j.newar.2003.12.059
    [25]
    Weekes T C, Badran H, Biller S D, et al. VERITAS: the Very Energetic Radiation Imaging Telescope Array System. Astroparticle Physics, 2002, 17: 221–243. doi: 10.1016/S0927-6505(01)00152-9
    [26]
    The CTA Consortium. Science with the Cherenkov Telescope Array. Singapore: World Scientific, 2019.
    [27]
    He H, LHAASO Collaboration. Design of the LHAASO detectors. Radiation Detection Technology and Methods, 2018, 2: 7. doi: 10.1007/s41605-018-0037-3
    [28]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Observations of the Crab nebula with HESS. Astronomy and Astrophysics, 2006, 457: 899–915. doi: 10.1051/0004-6361:20065351
    [29]
    Aleksić J, Ansoldi S, Antonelli L A, et al. The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, 2016, 72: 76–94. doi: 10.1016/j.astropartphys.2015.02.005
    [30]
    Bell A R. The acceleration of cosmic rays in shock fronts: I. Monthly Notices of the Royal Astronomical Society, 1978, 182: 147–156. doi: 10.1093/mnras/182.2.147
    [31]
    Drury L O. Origin of cosmic rays. Astroparticle Physics, 2012, 39–40: 52–60. doi: 10.1016/j.astropartphys.2012.02.006
    [32]
    Ackermann M, Ajello M, Allafort A, et al. Detection of the characteristic pion-decay signature in supernova remnants. Science, 2013, 339: 807–811. doi: 10.1126/science.1231160
    [33]
    Giuliani A, Cardillo M, Tavani M, et al. Neutral pion emission from accelerated protons in the supernova remnant W44. The Astrophysical Journal Letters, 2011, 742: L30. doi: 10.1088/2041-8205/742/2/L30
    [34]
    Zirakashvili V N, Aharonian F. Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astronomy and Astrophysics, 2007, 465: 695–702. doi: 10.1051/0004-6361:20066494
    [35]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astronomy and Astrophysics, 2006, 449: 223–242. doi: 10.1051/0004-6361:20054279
    [36]
    H.E.S.S. Collaboration, Abdalla H, Abramowski A, et al. The H.E.S.S. Galactic plane survey. Astronomy and Astrophysics, 2018, 612: A3. doi: 10.1051/0004-6361/201732098
    [37]
    Ahnen M L, Ansoldi S, Antonelli L A, et al. A cut-off in the TeV gamma-ray spectrum of the SNR. Monthly Notices of the Royal Astronomical Society, 2017, 472: 2956–2962. doi: 10.1093/mnras/stx2079
    [38]
    Aharonian F, Yang R, de Oña Wilhelmi E. Massive stars as major factories of Galactic cosmic rays. Nature Astronomy, 2019, 3: 561–567. doi: 10.1038/s41550-019-0724-0
    [39]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astronomy and Astrophysics, 2007, 464: 235–243. doi: 10.1051/0004-6361:20066381
    [40]
    Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. H.E.S.S. Observations of the supernova remnant RX J0852.0-4622: Shell-type morphology and spectrum of a widely extended very high energy gamma-ray source. The Astrophysical Journal, 2007, 661: 236–249. doi: 10.1086/512603
    [41]
    H.E.S.S. Collaboration, Abramowski A, Acero F, et al. A new SNR with TeV shell-type morphology: HESS J1731-347. Astronomy and Astrophysics, 2011, 531: A81. doi: 10.1051/0004-6361/201016425
    [42]
    HESS Collaboration, Abramowski A, Aharonian F, et al. HESS J1640-465: An exceptionally luminous TeV γ-ray supernova remnant. Monthly Notices of the Royal Astronomical Society, 2014, 439: 2828–2836. doi: 10.1093/mnras/stu139
    [43]
    Archambault S, Archer A, Benbow W, et al. Gamma-ray observations of Tycho’s supernova remnant with VERITAS and Fermi. The Astrophysical Journal, 2017, 836: 23. doi: 10.3847/1538-4357/836/1/23
    [44]
    Acero F, Aharonian F, Akhperjanian A G, et al. First detection of VHE γ-rays from SN 1006 by HESS. Astronomy and Astrophysics, 2010, 516: A62. doi: 10.1051/0004-6361/200913916
    [45]
    Lagage P O, Cesarsky C J. The maximum energy of cosmic rays accelerated by supernova shocks. Astronomy and Astrophysics, 1983, 125: 249–257.
    [46]
    Bell A R, Matthews J H, Blundell K M. Cosmic ray acceleration by shocks: Spectral steepening due to turbulent magnetic field amplification. Monthly Notices of the Royal Astronomical Society, 2019, 488: 2466–2472. doi: 10.1093/mnras/stz1805
    [47]
    Malkov M A, Aharonian F A. Cosmic-ray spectrum steepening in supernova remnants. I. Loss-free self-similar solution. The Astrophysical Journal, 2019, 881: 2. doi: 10.3847/1538-4357/ab2c01
    [48]
    Hanusch A, Liseykina T V, Malkov M, et al. Steepening of cosmic-ray spectra in shocks with varying magnetic field direction. The Astrophysical Journal, 2019, 885: 11. doi: 10.3847/1538-4357/ab426d
    [49]
    Caprioli D, Haggerty C C, Blasi P. Kinetic simulations of cosmic-ray-modified shocks. II. Particle spectra. The Astrophysical Journal, 2020, 905: 2. doi: 10.3847/1538-4357/abbe05
    [50]
    Schure K M, Bell A R. Cosmic ray acceleration in young supernova remnants. Monthly Notices of the Royal Astronomical Society, 2013, 435: 1174–1185. doi: 10.1093/mnras/stt1371
    [51]
    Aharonian F, Akhperjanian A, Barrio J, et al. Evidence for TeV gamma ray emission from Cassiopeia A. Astronomy and Astrophysics, 2001, 370: 112–120. doi: 10.1051/0004-6361:20010243
    [52]
    Acciari V A, Aliu E, Arlen T, et al. Observations of the shell-type supernova remnant cassiopeia a at TeV energies with veritas. The Astrophysical Journal, 2010, 714: 163–169. doi: 10.1088/0004-637X/714/1/163
    [53]
    Acciari V A, Aliu E, Arlen T, et al. Discovery of TeV gamma-ray emission from Tycho’s Supernova Remnant. The Astrophysical Journal Letters, 2011, 730: L20. doi: 10.1088/2041-8205/730/2/L20
    [54]
    H.E.S.S. Collaboration, Abramowski A, Aharonian F, et al. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S. Monthly Notices of the Royal Astronomical Society, 2014, 441: 790–799. doi: 10.1093/mnras/stu459
    [55]
    Reynolds S P, Borkowski K J, Green D A, et al. The youngest Galactic supernova remnant: G1.9+0.3. The Astrophysical Journal, 2008, 680: L41. doi: 10.1086/589570
    [56]
    Kafexhiu E, Aharonian F, Taylor A M, et al. Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies. 2014. https://arxiv.org/abs/1406.7369. Accessed October 10, 2021.
    [57]
    Binns W R, Israel M H, Christian E R, et al. Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science, 2016, 352: 677–680. doi: 10.1126/science.aad6004
    [58]
    Acero F, Ackermann M, Ajello M, et al. Development of the model of galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. The Astrophysical Journal Supplement Series, 2016, 223: 26. doi: 10.3847/0067-0049/223/2/26
    [59]
    Yang R, Aharonian F, Evoli C. Radial distribution of the diffuse γ-ray emissivity in the Galactic disk. Physical Rewiew D, 2016, 93: 123007. doi: 10.1103/PhysRevD.93.123007
    [60]
    Parizot E, Marcowith A, van der Swaluw E, et al. Superbubbles and energetic particles in the Galaxy. I. Collective effects of particle acceleration. Astronomy and Astrophysics, 2004, 424: 747–760. doi: 10.1051/0004-6361:20041269
    [61]
    Bykov A M. Nonthermal particles and photons in starburst regions and superbubbles. The Astronomy and Astrophysics Review, 2014, 22: 77. doi: 10.1007/s00159-014-0077-8
    [62]
    Cesarsky C J, Montmerle T. Gamma rays from active regions in the galaxy: The possible contribution of stellar winds. Space Sci. Rev., 1983, 36: 173–193. doi: 10.1007/BF00167503
    [63]
    Ackermann M, Ajello M, Allafort A, et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science, 2011, 334: 1103. doi: 10.1126/science.1210311
    [64]
    Yang R, Aharonian F. Diffuse γ-ray emission near the young massive cluster NGC 3603. Astronomy and Astrophysics, 2017, 600: A107. doi: 10.1051/0004-6361/201630213
    [65]
    Saha L, Domínguez A, Tibaldo L, et al. Morphological and spectral study of 4FGL J1115.1−6118 in the region of the young massive stellar cluster NGC 3603. The Astrophysical Journal, 2020, 897: 131. doi: 10.3847/1538-4357/ab9ac2
    [66]
    Abramowski A, Acero F,