By optimization methods on Riemannian submanifolds, we establish two inequalities between the intrinsic and extrinsic invariants, for generalized normalized δ-Casorati curvatures of warped product submanifolds in a Riemannian manifold of quasi-constant curvature. We generalize the conclusions of the optimal inequalities of submanifolds in real space forms.
By optimization methods on Riemannian submanifolds, we establish two inequalities between the intrinsic and extrinsic invariants, for generalized normalized δ-Casorati curvatures of warped product submanifolds in a Riemannian manifold of quasi-constant curvature. We generalize the conclusions of the optimal inequalities of submanifolds in real space forms.
[1] |
Chen B Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 1993, 60: 568–578. doi: 10.1007/BF01236084
|
[2] |
Chen B Y. A Riemannian invariant and its applications to submanifold theory. Results in Mathematics, 1995, 27: 17–26. doi: 10.1007/BF03322265
|
[3] |
Casorati F. Mesure de la courbure des surfaces suivant l'idée commune.: Ses rapports avec les mesures de courbure gaussienne et moyenne. Acta. Math., 1890, 14: 95–110. doi: 10.1007/BF02413317
|
[4] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities involving Casorati curvatures. Bull.Transilv. Univ. Brasov Ser. B, 2007, 14: 85–93.
|
[5] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure and Appl. Math., 2008, 9: 79.
|
[6] |
Park K S. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwanese J. Math., 2018, 22: 63–77. doi: 10.11650/tjm/8124
|
[7] |
Choudhary M A, Blaga A M. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms. J. Geom., 2020, 111: 39. doi: 10.1007/s00022-020-00552-5
|
[8] |
Chen B Y, Yano K. Hypersurfaces of a conformally flat space. Tensor, N. S., 1972, 26: 318–322.
|
[9] |
Chen B Y. Another general inequality for CR-warped products in complex space forms. Hokkaido Math. J., 2003, 32: 415–444.
|
[10] |
Oprea T. Chen's inequality in the Lagrangian case. Colloq. Math., 2007, 108: 163–169. doi: 10.4064/cm108-1-15
|
[11] |
Vîlcu G E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl., 2018, 465: 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
|
[1] |
Chen B Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 1993, 60: 568–578. doi: 10.1007/BF01236084
|
[2] |
Chen B Y. A Riemannian invariant and its applications to submanifold theory. Results in Mathematics, 1995, 27: 17–26. doi: 10.1007/BF03322265
|
[3] |
Casorati F. Mesure de la courbure des surfaces suivant l'idée commune.: Ses rapports avec les mesures de courbure gaussienne et moyenne. Acta. Math., 1890, 14: 95–110. doi: 10.1007/BF02413317
|
[4] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities involving Casorati curvatures. Bull.Transilv. Univ. Brasov Ser. B, 2007, 14: 85–93.
|
[5] |
Decu S, Haesen S, Verstraelen L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure and Appl. Math., 2008, 9: 79.
|
[6] |
Park K S. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwanese J. Math., 2018, 22: 63–77. doi: 10.11650/tjm/8124
|
[7] |
Choudhary M A, Blaga A M. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms. J. Geom., 2020, 111: 39. doi: 10.1007/s00022-020-00552-5
|
[8] |
Chen B Y, Yano K. Hypersurfaces of a conformally flat space. Tensor, N. S., 1972, 26: 318–322.
|
[9] |
Chen B Y. Another general inequality for CR-warped products in complex space forms. Hokkaido Math. J., 2003, 32: 415–444.
|
[10] |
Oprea T. Chen's inequality in the Lagrangian case. Colloq. Math., 2007, 108: 163–169. doi: 10.4064/cm108-1-15
|
[11] |
Vîlcu G E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl., 2018, 465: 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
|