The kernel density estimator for widely orthant dependent random variables is studied. The exponential inequalities and the exponential rate for the estimator of a density function with a uniform version over compact sets are investigated. Further, the consistency of the estimator is proved. The results are generalizations of some existing outcomes for both associated and negatively associated samples. The convergence rate of the kernel density estimator is illustrated via a simulation study. Moreover, a real data analysis is presented.
The kernel density estimator for widely orthant dependent random variables is studied. The exponential inequalities and the exponential rate for the estimator of a density function with a uniform version over compact sets are investigated. Further, the consistency of the estimator is proved. The results are generalizations of some existing outcomes for both associated and negatively associated samples. The convergence rate of the kernel density estimator is illustrated via a simulation study. Moreover, a real data analysis is presented.
[1] |
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat., 1962, 33 (3): 1065–1076. doi: 10.1214/aoms/1177704472
|
[2] |
Rosenblatt M. Curve estimates. Ann. Math. Stat., 1971, 42 (6): 1815–1842. doi: 10.1214/aoms/1177693050
|
[3] |
Silverman B W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.
|
[4] |
Yakowitz S. Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivar. Anal., 1989, 30 (1): 124–136. doi: 10.1016/0047-259X(89)90091-2
|
[5] |
Bagia I, Rao B. Estimation of the survival functions for stationary associated processes. Stat. Probab. Lett., 1991, 12 (5): 291–385. doi: 10.1016/0167-7152(91)90027-O
|
[6] |
Bagia I, Rao B. Kernel-type density and failure rate estimation for associated sequences. Ann. Inst. Stat. Math., 1995, 47 (2): 253–266. doi: 10.1007/BF00773461
|
[7] |
Roussas G G. Kernel estimates under association: Strong uniform consistency. Stat. Probab. Lett., 1991, 12 (5): 393–403. doi: 10.1016/0167-7152(91)90028-P
|
[8] |
Masry E. Multivariate probability density estimation for associated processes: Strong consistency and rates. Stat Probab. Lett., 2002, 58 (2): 205–219. doi: 10.1016/S0167-7152(02)00105-0
|
[9] |
Oliveira P E. Density estimation for associated sampling: A point process influenced approach. J. Nonparametr. Stat., 2002, 14 (6): 495–509. doi: 10.1080/10485250213904
|
[10] |
Henriques C, Oliveira P E. Exponential rates for kernel density estimation under association. Stat. Neerl., 2005, 59 (4): 448–466. doi: 10.1111/j.1467-9574.2005.00302.x
|
[11] |
Ling N X, Xu C M, Peng X Z. The consistency of density function kernel estimation under NQD samples. Journal of Hefei University of Technology (Natural Science Edition), 2008, 31 (2): 287–290. doi: 10.3969/j.issn.1003-5060.2008.02.030
|
[12] |
Su H L, Tang G Q, Sun G H. The consistency of density kernel estimation under ND samples. Journal of Guilin University of Technology, 2013, 33 (3): 565–568. doi: 10.3969/j.issn.1674-9057.2013.03.030
|
[13] |
Wang M, Li K C. Generalized consistency of density kernel estimation. Journal of Hubei University of Arts and Science, 2015, 36 (11): 19–22. doi: 10.3969/j.issn.1009-2854.2015.11.004
|
[14] |
Kheyri A, Amini M, Jabbari H, et al. Kernel density estimation under negative superadditive dependence and its application for real data. Journal of Statistical Computation and Simulation, 2019, 89 (10): 2373–2392. doi: 10.1080/00949655.2019.1619738
|
[15] |
Wang K Y, Wang Y B, Gao Q W. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate. Methodology and Computing in Applied Probability, 2013, 15: 109–124. doi: 10.1007/s11009-011-9226-y
|
[16] |
Joag-Dev K, Proschan F. Negative association of random variables with applications. Annals of Statistics, 1983, 11 (1): 286–295. doi: 10.1214/aos/1176346079
|
[17] |
Hu T Z. Negatively superadditive dependence of random variables with applications. Chinese Journal of Applied Probability and Statisties, 2000, 16 (2): 133–144. doi: 10.3969/j.issn.1001-4268.2000.02.003
|
[18] |
Wang X J, Xu C, Hu T C, et al. On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models. TEST, 2014, 23 (3): 607–629. doi: 10.1007/s11749-014-0365-7
|
[19] |
Hoeffding W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc., 1963, 58 (301): 13–30. doi: 10.1080/01621459.1963.10500830
|
[20] |
Liu L. Precise large deviations for dependent random variables with heavy tails. Stat. Probab. Lett., 2009, 79 (9): 1290–1298. doi: 10.1016/j.spl.2009.02.001
|
[1] |
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat., 1962, 33 (3): 1065–1076. doi: 10.1214/aoms/1177704472
|
[2] |
Rosenblatt M. Curve estimates. Ann. Math. Stat., 1971, 42 (6): 1815–1842. doi: 10.1214/aoms/1177693050
|
[3] |
Silverman B W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986.
|
[4] |
Yakowitz S. Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivar. Anal., 1989, 30 (1): 124–136. doi: 10.1016/0047-259X(89)90091-2
|
[5] |
Bagia I, Rao B. Estimation of the survival functions for stationary associated processes. Stat. Probab. Lett., 1991, 12 (5): 291–385. doi: 10.1016/0167-7152(91)90027-O
|
[6] |
Bagia I, Rao B. Kernel-type density and failure rate estimation for associated sequences. Ann. Inst. Stat. Math., 1995, 47 (2): 253–266. doi: 10.1007/BF00773461
|
[7] |
Roussas G G. Kernel estimates under association: Strong uniform consistency. Stat. Probab. Lett., 1991, 12 (5): 393–403. doi: 10.1016/0167-7152(91)90028-P
|
[8] |
Masry E. Multivariate probability density estimation for associated processes: Strong consistency and rates. Stat Probab. Lett., 2002, 58 (2): 205–219. doi: 10.1016/S0167-7152(02)00105-0
|
[9] |
Oliveira P E. Density estimation for associated sampling: A point process influenced approach. J. Nonparametr. Stat., 2002, 14 (6): 495–509. doi: 10.1080/10485250213904
|
[10] |
Henriques C, Oliveira P E. Exponential rates for kernel density estimation under association. Stat. Neerl., 2005, 59 (4): 448–466. doi: 10.1111/j.1467-9574.2005.00302.x
|
[11] |
Ling N X, Xu C M, Peng X Z. The consistency of density function kernel estimation under NQD samples. Journal of Hefei University of Technology (Natural Science Edition), 2008, 31 (2): 287–290. doi: 10.3969/j.issn.1003-5060.2008.02.030
|
[12] |
Su H L, Tang G Q, Sun G H. The consistency of density kernel estimation under ND samples. Journal of Guilin University of Technology, 2013, 33 (3): 565–568. doi: 10.3969/j.issn.1674-9057.2013.03.030
|
[13] |
Wang M, Li K C. Generalized consistency of density kernel estimation. Journal of Hubei University of Arts and Science, 2015, 36 (11): 19–22. doi: 10.3969/j.issn.1009-2854.2015.11.004
|
[14] |
Kheyri A, Amini M, Jabbari H, et al. Kernel density estimation under negative superadditive dependence and its application for real data. Journal of Statistical Computation and Simulation, 2019, 89 (10): 2373–2392. doi: 10.1080/00949655.2019.1619738
|
[15] |
Wang K Y, Wang Y B, Gao Q W. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate. Methodology and Computing in Applied Probability, 2013, 15: 109–124. doi: 10.1007/s11009-011-9226-y
|
[16] |
Joag-Dev K, Proschan F. Negative association of random variables with applications. Annals of Statistics, 1983, 11 (1): 286–295. doi: 10.1214/aos/1176346079
|
[17] |
Hu T Z. Negatively superadditive dependence of random variables with applications. Chinese Journal of Applied Probability and Statisties, 2000, 16 (2): 133–144. doi: 10.3969/j.issn.1001-4268.2000.02.003
|
[18] |
Wang X J, Xu C, Hu T C, et al. On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models. TEST, 2014, 23 (3): 607–629. doi: 10.1007/s11749-014-0365-7
|
[19] |
Hoeffding W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc., 1963, 58 (301): 13–30. doi: 10.1080/01621459.1963.10500830
|
[20] |
Liu L. Precise large deviations for dependent random variables with heavy tails. Stat. Probab. Lett., 2009, 79 (9): 1290–1298. doi: 10.1016/j.spl.2009.02.001
|