[1] |
Jones M R, Seeman N C, Mirkin C A. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224): 1260901.
|
[2] |
Zhang F, Nangreave J, Liu Y, et al. Structural DNA nanotechnology: state of the art and future perspective.J. Am. Chem. Soc., 2014, 136(32): 11198-11211.
|
[3] |
Seeman N C. Structural DNA Nanotechnology. Cambridge:Cambridge University Press, 2016.
|
[4] |
Lin Q Y, Mason J A, Li Z Y, et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science,2018, 359(6376): 669-672.
|
[5] |
Young K L, Ross M B,Blaber M G, et al. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv.Mater.,2014, 26(4): 653-659.
|
[6] |
Fan J A, Wu C, Bao K, et al. Self-assembled plasmonic nanoparticle clusters.Science, 2010, 328(5982): 1135-1138.
|
[7] |
Lu C H, Willner B, Willner I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACS Nano, 2013, 7(10): 8320-8332.
|
[8] |
Keyser U F.Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotech., 2016, 11(2): 106-108.
|
[9] |
Pilo-Pais M, Acuna G P,Tinnefeld P, et al. Sculpting light by arranging optical components with DNA nanostructures. MRS Bull., 2017, 42: 936-942.
|
[10] |
Zhou C, Duan X Y, Liu N. DNA-nanotechnology-enabled chiral plasmonics: From static to dynamic. Acc. Chem. Res., 2017, 50(12): 2906-2914.
|
[11] |
Han X G, Zhou Z H, Yang F, et al. Catch and release: DNA tweezers that can capture, hold and release an object under control. J. Am. Chem. Soc., 2008, 130: 14414-14415.
|
[12] |
Zhang C, Macfarlane R J, Young K L, et al. A general approach to DNA-programmable atom equivalents.Nat. Mater., 2013, 12(8): 741-746.
|
[13] |
Zhang Y, Lu F, Yager K G, et al. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems.Nat. Nanotechnol., 2013, 8(11): 865-872.
|
[14] |
Chen G L, Wang S, Song L, et al. Pt supraparticles with controllable DNA valences for programmed nanoassembly. Chem. Commun., 2017, 53(70): 9773-9776.
|
[15] |
Zheng Y Q, Li Y L, Deng Z X. Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands.Chem. Commun., 2012, 48(49): 6160-6162.
|
[16] |
Li Y L, Zheng Y Q, Gong M, et al. Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures.Chem. Commun., 2012, 48(31): 3727-3729.
|
[17] |
Wang H Q, Li Y L, Gong M, et al. Core solution:A strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chem. Sci., 2014, 5(3): 1015-1020.
|
[18] |
Wang H Q, Deng Z X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett., 2015, 26(12): 1435-1438.
|
[19] |
Tikhomirov G, Hoogland S, Lee P E, et al. DNA-based programming of quantum dot valency, self-assembly and luminescence.Nat. Nanotechnol., 2011, 6(8): 485-490.
|
[20] |
Pal S, Sharma J, Yan H, et al. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun., 2009(40): 6059-6061.
|
[21] |
Zhang X, Servos M R, Liu J. Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA.Chem. Commun., 2012, 48(81): 10114-10116.
|
[22] |
Deng Z, Pal S, Samanta A, et al. DNA functionalization of colloidal II-VI semiconductor nanowires for multiplex nanoheterostructures. Chem. Sci., 2013, 4(5): 2234-2240.
|
[23] |
Li L, Wu P, Hwang K, et al. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging.J. Am. Chem. Soc., 2013, 135(7): 2411-2414.
|
[24] |
Song L, Deng Z X. Valency control and functional synergy in DNA-bonded nanomolecules.ChemNanoMat, 2017, 3(10): 698-712.
|
[25] |
Hao Y, Li Y J, Song L, et al. Flash synthesis of spherical nucleic acids with record DNA density. J. Am. Chem. Soc., 2021, 143(8): 3065-3069.
|
[26] |
Liao Y H, Lin C H, Cheng C Y, et al. Monovalent and oriented labeling of gold nanoprobes for the high-resolution tracking of a single-membrane molecule. ACSNano, 2019, 13(10): 10918-10928.
|
[27] |
Howarth M, Liu W H, Puthenveetil S, et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat.Methods, 2008, 5(5): 397-399.
|
[28] |
Takashimaa A, Oishi M. Kinetic study of DNA hybridization on DNA-modified gold nanoparticles with engineered nano-interfaces. RSC Adv., 2015, 5(93): 76014-76018.
|
[29] |
Leunissen M E, Dreyfus R, Sha R, et al. Quantitative study of the association thermodynamics and kinetics of DNA-coated particles for different functionalization schemes.J. Am. Chem. Soc., 2010, 132(6): 1903-1913.
|
[30] |
Chen C, Wang W, Ge J, et al. Kinetics and thermodynamics of DNA hybridization on gold nanoparticles.Nucleic Acids Res., 2009, 37(11): 3756-3765.
|
[31] |
Elghanian R, Storhoff J J, Mucic R C, et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science, 1997, 277(5329): 1078-1081.
|
[32] |
Park S, Brown K A, Hamad-Schifferli K.Changes in oligonucleotide conformation on nanoparticle surfaces by modification with mercaptohexanol. Nano Lett., 2004, 4(10): 1925-1929.
|
[33] |
Liu B W, Wu P, Huang Z C, et al. Bromide as arobust backfiller on gold for precise control of DNA conformation and high stability of spherical nucleic acids. J. Am. Chem. Soc., 2018, 140(13): 4499-4502.
|
[34] |
Maye M M, Nykypanchuk D, van der Lelie D, et al.A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc., 2006, 128(43): 14020-14021.
|
[35] |
Prigodich A E, Lee O S, Daniel W L, et al.Tailoring DNA structure to increase target hybridization kinetics on surfaces. J. Am. Chem. Soc., 2010, 132(31): 10638-10641.
|
[36] |
Li Y L, Han X G, Deng Z X. Grafting SWNTs with highly hybridizable DNA sequences: Potential building blocks for DNA-programmed material assembly. Angew. Chem. Int. Ed., 2007, 46(39): 7481-7484.
|
[37] |
Maune H T, Han S P, Barish R D, et al.Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotech., 2010, 5(1): 61-66.
|
[38] |
Sun W, Shen J, Zhao Z, et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science, 2020, 368(6493): 874-877.
|
[39] |
Zhang J X, Fang J X, Duan W, et al. Predicting DNA hybridization kinetics from sequence. Nat. Chem., 2018, 10(11): 91-98.
|
[40] |
Esashika K, Saiki T.DNA Hybridization assay using gold nanoparticles and electrophoresis separation provides 1 pM sensitivity. Bioconjug. Chem., 2018, 29(1): 182-189.
|
[41] |
Marimuthu K,Chakrabarti R. Sequence-dependent theory of oligonucleotide hybridization kinetics.J. Chem. Phys., 2014, 140(17): 175104.
|
[42] |
Sorgenfrei S, Chiu C Y, Gonzalez Jr R L, et al. Label-free field-effect-based single-molecule detection of DNA hybridization kinetics. Nat. Nanotechnol., 2011, 6(2): 126-132.
|
[43] |
Yin Y D, Zhao X S. Kinetics and dynamics of DNA hybridization. Acc. Chem. Res., 2011, 44(1): 1172-1181.
|
[44] |
Lee C Y, Nguyen P C, Grainger D W, et al. Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers.Anal. Chem., 2007, 79(12): 4390-4400.
|
[45] |
Erickson D, Li D Q, Krull U J. Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal.Biochem., 2003, 317(2):186-200.
|
[46] |
Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal. Chem., 1998, 70(7): 1288-1296.
|
[47] |
Schwille P, Oehlenschläger F, Walter N G. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis.Biochemistry, 1996, 35(31): 10182-10193.
|
[48] |
Mazumder A, Majlessi M, Becker M M. A high throughput method to investigate oligodeoxyribonucleotide hybridization kinetics and thermodynamics.Nucleic Acids Res., 1998, 26(8): 1996-2000.
|
[49] |
Yao G B, Li J, Li Q, et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater., 2020, 19(7): 781-788.
|
[50] |
Zanchet D, Micheel C M, Parak W J, et al.Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett., 2001, 1(1): 32-35.
|
[51] |
Claridge S A, Liang H W, Basu S R, et al.Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett., 2008, 8(4): 1202-1206.
|
[52] |
Kushon S A, Jordan J P, Seifert J L, et al.Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins.J. Am. Chem. Soc., 2001, 123(44): 10805-10813.
|
[53] |
Riccelli P V, Merante F, Leung K T, et al. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic Acids Res., 2001, 29(4): 996-1004.
|
[54] |
Gao Y, Wolf L K, Georgiadis R M. Secondary structure effects on DNA hybridization kinetics:A solution versus surface comparison.Nucleic Acids Res., 2006, 34(11): 3370-3377.
|
[55] |
Alivisatos A P, Johnsson K P, Peng X G, et al.Organization of 'nanocrystal molecules' using DNA. Nature, 1996, 382: 609-611.
|
[56] |
Yuan B F, Zhuang X Y, Hao Y H, et al. Kinetics of base stacking-aided DNA hybridization.Chem. Commun., 2008, (48): 6600-6602.
|
[57] |
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13): 3406-3415.
|
[58] |
Markegard C B, Gallivan C P, Cheng D D, et al. Effects of concentration and temperature on DNA hybridization by two closely related sequences via large-scale coarse-grained simulations. J. Phys. Chem. B, 2016, 120(32): 7795-7806.
|
[59] |
Markegard C B, Fu I W, Reddy K A, et al. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment. J. Phys. Chem. B, 2015, 119(5): 1823-1834.
|
[1] |
Jones M R, Seeman N C, Mirkin C A. Programmable materials and the nature of the DNA bond. Science, 2015, 347(6224): 1260901.
|
[2] |
Zhang F, Nangreave J, Liu Y, et al. Structural DNA nanotechnology: state of the art and future perspective.J. Am. Chem. Soc., 2014, 136(32): 11198-11211.
|
[3] |
Seeman N C. Structural DNA Nanotechnology. Cambridge:Cambridge University Press, 2016.
|
[4] |
Lin Q Y, Mason J A, Li Z Y, et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science,2018, 359(6376): 669-672.
|
[5] |
Young K L, Ross M B,Blaber M G, et al. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv.Mater.,2014, 26(4): 653-659.
|
[6] |
Fan J A, Wu C, Bao K, et al. Self-assembled plasmonic nanoparticle clusters.Science, 2010, 328(5982): 1135-1138.
|
[7] |
Lu C H, Willner B, Willner I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACS Nano, 2013, 7(10): 8320-8332.
|
[8] |
Keyser U F.Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotech., 2016, 11(2): 106-108.
|
[9] |
Pilo-Pais M, Acuna G P,Tinnefeld P, et al. Sculpting light by arranging optical components with DNA nanostructures. MRS Bull., 2017, 42: 936-942.
|
[10] |
Zhou C, Duan X Y, Liu N. DNA-nanotechnology-enabled chiral plasmonics: From static to dynamic. Acc. Chem. Res., 2017, 50(12): 2906-2914.
|
[11] |
Han X G, Zhou Z H, Yang F, et al. Catch and release: DNA tweezers that can capture, hold and release an object under control. J. Am. Chem. Soc., 2008, 130: 14414-14415.
|
[12] |
Zhang C, Macfarlane R J, Young K L, et al. A general approach to DNA-programmable atom equivalents.Nat. Mater., 2013, 12(8): 741-746.
|
[13] |
Zhang Y, Lu F, Yager K G, et al. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems.Nat. Nanotechnol., 2013, 8(11): 865-872.
|
[14] |
Chen G L, Wang S, Song L, et al. Pt supraparticles with controllable DNA valences for programmed nanoassembly. Chem. Commun., 2017, 53(70): 9773-9776.
|
[15] |
Zheng Y Q, Li Y L, Deng Z X. Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands.Chem. Commun., 2012, 48(49): 6160-6162.
|
[16] |
Li Y L, Zheng Y Q, Gong M, et al. Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures.Chem. Commun., 2012, 48(31): 3727-3729.
|
[17] |
Wang H Q, Li Y L, Gong M, et al. Core solution:A strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chem. Sci., 2014, 5(3): 1015-1020.
|
[18] |
Wang H Q, Deng Z X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett., 2015, 26(12): 1435-1438.
|
[19] |
Tikhomirov G, Hoogland S, Lee P E, et al. DNA-based programming of quantum dot valency, self-assembly and luminescence.Nat. Nanotechnol., 2011, 6(8): 485-490.
|
[20] |
Pal S, Sharma J, Yan H, et al. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun., 2009(40): 6059-6061.
|
[21] |
Zhang X, Servos M R, Liu J. Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA.Chem. Commun., 2012, 48(81): 10114-10116.
|
[22] |
Deng Z, Pal S, Samanta A, et al. DNA functionalization of colloidal II-VI semiconductor nanowires for multiplex nanoheterostructures. Chem. Sci., 2013, 4(5): 2234-2240.
|
[23] |
Li L, Wu P, Hwang K, et al. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging.J. Am. Chem. Soc., 2013, 135(7): 2411-2414.
|
[24] |
Song L, Deng Z X. Valency control and functional synergy in DNA-bonded nanomolecules.ChemNanoMat, 2017, 3(10): 698-712.
|
[25] |
Hao Y, Li Y J, Song L, et al. Flash synthesis of spherical nucleic acids with record DNA density. J. Am. Chem. Soc., 2021, 143(8): 3065-3069.
|
[26] |
Liao Y H, Lin C H, Cheng C Y, et al. Monovalent and oriented labeling of gold nanoprobes for the high-resolution tracking of a single-membrane molecule. ACSNano, 2019, 13(10): 10918-10928.
|
[27] |
Howarth M, Liu W H, Puthenveetil S, et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat.Methods, 2008, 5(5): 397-399.
|
[28] |
Takashimaa A, Oishi M. Kinetic study of DNA hybridization on DNA-modified gold nanoparticles with engineered nano-interfaces. RSC Adv., 2015, 5(93): 76014-76018.
|
[29] |
Leunissen M E, Dreyfus R, Sha R, et al. Quantitative study of the association thermodynamics and kinetics of DNA-coated particles for different functionalization schemes.J. Am. Chem. Soc., 2010, 132(6): 1903-1913.
|
[30] |
Chen C, Wang W, Ge J, et al. Kinetics and thermodynamics of DNA hybridization on gold nanoparticles.Nucleic Acids Res., 2009, 37(11): 3756-3765.
|
[31] |
Elghanian R, Storhoff J J, Mucic R C, et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science, 1997, 277(5329): 1078-1081.
|
[32] |
Park S, Brown K A, Hamad-Schifferli K.Changes in oligonucleotide conformation on nanoparticle surfaces by modification with mercaptohexanol. Nano Lett., 2004, 4(10): 1925-1929.
|
[33] |
Liu B W, Wu P, Huang Z C, et al. Bromide as arobust backfiller on gold for precise control of DNA conformation and high stability of spherical nucleic acids. J. Am. Chem. Soc., 2018, 140(13): 4499-4502.
|
[34] |
Maye M M, Nykypanchuk D, van der Lelie D, et al.A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc., 2006, 128(43): 14020-14021.
|
[35] |
Prigodich A E, Lee O S, Daniel W L, et al.Tailoring DNA structure to increase target hybridization kinetics on surfaces. J. Am. Chem. Soc., 2010, 132(31): 10638-10641.
|
[36] |
Li Y L, Han X G, Deng Z X. Grafting SWNTs with highly hybridizable DNA sequences: Potential building blocks for DNA-programmed material assembly. Angew. Chem. Int. Ed., 2007, 46(39): 7481-7484.
|
[37] |
Maune H T, Han S P, Barish R D, et al.Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotech., 2010, 5(1): 61-66.
|
[38] |
Sun W, Shen J, Zhao Z, et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science, 2020, 368(6493): 874-877.
|
[39] |
Zhang J X, Fang J X, Duan W, et al. Predicting DNA hybridization kinetics from sequence. Nat. Chem., 2018, 10(11): 91-98.
|
[40] |
Esashika K, Saiki T.DNA Hybridization assay using gold nanoparticles and electrophoresis separation provides 1 pM sensitivity. Bioconjug. Chem., 2018, 29(1): 182-189.
|
[41] |
Marimuthu K,Chakrabarti R. Sequence-dependent theory of oligonucleotide hybridization kinetics.J. Chem. Phys., 2014, 140(17): 175104.
|
[42] |
Sorgenfrei S, Chiu C Y, Gonzalez Jr R L, et al. Label-free field-effect-based single-molecule detection of DNA hybridization kinetics. Nat. Nanotechnol., 2011, 6(2): 126-132.
|
[43] |
Yin Y D, Zhao X S. Kinetics and dynamics of DNA hybridization. Acc. Chem. Res., 2011, 44(1): 1172-1181.
|
[44] |
Lee C Y, Nguyen P C, Grainger D W, et al. Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers.Anal. Chem., 2007, 79(12): 4390-4400.
|
[45] |
Erickson D, Li D Q, Krull U J. Modeling of DNA hybridization kinetics for spatially resolved biochips. Anal.Biochem., 2003, 317(2):186-200.
|
[46] |
Okahata Y, Kawase M, Niikura K, et al. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal. Chem., 1998, 70(7): 1288-1296.
|
[47] |
Schwille P, Oehlenschläger F, Walter N G. Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis.Biochemistry, 1996, 35(31): 10182-10193.
|
[48] |
Mazumder A, Majlessi M, Becker M M. A high throughput method to investigate oligodeoxyribonucleotide hybridization kinetics and thermodynamics.Nucleic Acids Res., 1998, 26(8): 1996-2000.
|
[49] |
Yao G B, Li J, Li Q, et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater., 2020, 19(7): 781-788.
|
[50] |
Zanchet D, Micheel C M, Parak W J, et al.Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett., 2001, 1(1): 32-35.
|
[51] |
Claridge S A, Liang H W, Basu S R, et al.Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett., 2008, 8(4): 1202-1206.
|
[52] |
Kushon S A, Jordan J P, Seifert J L, et al.Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins.J. Am. Chem. Soc., 2001, 123(44): 10805-10813.
|
[53] |
Riccelli P V, Merante F, Leung K T, et al. Hybridization of single-stranded DNA targets to immobilized complementary DNA probes: comparison of hairpin versus linear capture probes. Nucleic Acids Res., 2001, 29(4): 996-1004.
|
[54] |
Gao Y, Wolf L K, Georgiadis R M. Secondary structure effects on DNA hybridization kinetics:A solution versus surface comparison.Nucleic Acids Res., 2006, 34(11): 3370-3377.
|
[55] |
Alivisatos A P, Johnsson K P, Peng X G, et al.Organization of 'nanocrystal molecules' using DNA. Nature, 1996, 382: 609-611.
|
[56] |
Yuan B F, Zhuang X Y, Hao Y H, et al. Kinetics of base stacking-aided DNA hybridization.Chem. Commun., 2008, (48): 6600-6602.
|
[57] |
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13): 3406-3415.
|
[58] |
Markegard C B, Gallivan C P, Cheng D D, et al. Effects of concentration and temperature on DNA hybridization by two closely related sequences via large-scale coarse-grained simulations. J. Phys. Chem. B, 2016, 120(32): 7795-7806.
|
[59] |
Markegard C B, Fu I W, Reddy K A, et al. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment. J. Phys. Chem. B, 2015, 119(5): 1823-1834.
|