[1] |
Ren S C. Spatial variability and source analysis of heavy metal pollution in vegetable fields in urban-rural ecotone. Hangzhou: Zhejiang University, 2013.
|
[2] |
Park E J, Kim D S, Park K. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 2008, 137: 441-449.
|
[3] |
Gordon G E.Receptor models. Environmental Science and Technology, 1980, 14(7): 792-799.
|
[4] |
Henry R C, Lewis C W, Hopke P K. Review of receptor model fundamentals. Atmospheric Environment, 1984, 18(8): 1507-1515.
|
[5] |
Bullock K R, Duvall R M, Norris G A,et al. Evaluation of the CMB and PMF methods using organic molecular markers in fine particulate matter collected during the Pittsburgh Air Quality Study. Atmospheric Environment, 2008, 42(29): 6897-6904.
|
[6] |
Borovec Z. Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 1996, 177(1): 237–250.
|
[7] |
Huang F, Wang X Q, Lou L P,et al. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 2010, 44(5): 1562–1572.
|
[8] |
Chueinta W, Hopke P K, Paatero P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 2000, 34(20): 3319-3329.
|
[9] |
Brown S G,Ebrly S, Paatero P, et al. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 2015, 518: 626-635.
|
[10] |
Lu X, Hu W Y, Huang B, et al. Analysis of heavy metal sources in farmland soils around mining area based on Unmix method. Environmental Science, 2018, 39(3): 1421-1429.
|
[11] |
Tian F L, Chen J W, Liu C Y, et al. Application of Monte Carlo Uncertainty Analysis in the Source Analysis of Receptor models. Chinese Science Bulletin, 2011, 56(32): 2675-2680.
|
[12] |
Khairy M A, Lohmann R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 2013, 91(7): 895-903.
|
[13] |
Yang B, Zhou L,Xue N, et al. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 2013, 443: 31-39.
|
[14] |
Chen W, Wu X, Zhang H, et al. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 2017, 230: 927-935.
|
[15] |
Dong B, Zhang R Z, Gan Y D, et al. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 2019, 651(2): 3127–3138.
|
[16] |
Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: A comparison of three methods. Environmental Pollution, 2016, 211:28-37.
|
[17] |
Thurston G D, Spengler J D. A qualitative assessment of source contribution to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 1985, 18: 1347-1355.
|
[18] |
Paatero P, Tapper U. Positive matrix factorization: A non-negative factor method with optimal utilization of error estimates of data values. Environmetrics, 1994, 5(2): 111-126.
|
[19] |
Tan J, Duan J, Ma Y, et al. Long-term trends of chemical characteristics and sources of fine particle in Foshan city, Pearl River Delta: 2008-2014. Science of the Total Environment, 2016, 565:519-528.
|
[20] |
Vaccaro S, Sobiecka E, Contini S, et al. The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere, 2007, 69: 1055-1063.
|
[21] |
Henry R C. Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and Intelligent Laboratory Systems, 2003, 65: 179-189.
|
[22] |
Lang Y H, Yang X, Wang H, et al. Diagnostic ratios and positive matrix factorization to identify potential sources of PAHs in sediments of the Rizhao offshore, China. Polycyclic Aromatic Compounds, 2013, 33: 161-172.
|
[23] |
China National Environmental Monitoring Center (CNEMC). The Background Centrations of Soil Elements of China. Beijing: China Environmental Science Press, 1990.
|
[24] |
Chen J J, Zhang H H, Liu J M, et al. Spatial distribution characteristics and influencing factors of heavy metal elements in soil surface under regional geological background in Guangdong Province. Journal of Ecology and Environment, 2011, 20(4): 646-651.
|
[25] |
Tong Z Q, Gu L, Duan H J, et al. Spatial distribution of heavy metal concentrations in roadside soil based on Kriging interpolation: A case study of Zhengzhou-Kaifeng section of National Highway 310. Journal of Environmental Sciences, 2012, 32(12): 3030-3038.
|
[26] |
Lin C J, Pehkonen S O. The chemistry of atmospheric mercury: A review. Atmospheric Environmental, 1999, 33: 2067-2079.
|
[27] |
Kemp K. Trends and sources for heavy metals in urban atmosphere. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 189: 227-232.
|
[28] |
Faiz Y, Tufail M, Javed M T, et al. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchemical Journal, 2009, 92(2): 186-192.
|
[29] |
Cao Y Z, Liu X J, Xie Y F, et al. Analysis of composition and concentrations characteristics of polycyclic aromatic hydrocarbons in topsoil of main areas in China. Journal of Environmental Sciences, 2012, 32(1): 197-203.
|
[30] |
Tian H Z, Wang Y, Xue Z G, et al. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China,2007. Science of the Total Environment, 2011, 409:3078-3081.
|
[31] |
Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS method and geostatistics. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022.
|
[32] |
Yuan Z W, Luo T, Liu X W, et al. Tracing anthropogenic cadmium emissions: From source to pollution. Science of the Total Environment, 2019, 676: 87-96.
|
[33] |
Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107.
|
[34] |
Hu W Y, Wang H F, Dong L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 2018, 237: 650 - 661.
|
[35] |
Bhattacharya P, Chesselet R, Stollenwerk K G, et al. Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 2007, 379: 109-120.
|
[36] |
Zheng Y M, Luo J F, Chen T B, et al. Characteristics of cadmium concentrations in soils of different land use types in Beijing. Geographical Research, 2005, 24(4): 542-548.
|
[37] |
Markus J, Mcbratney A. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environment International, 2001, 27(5): 399-411.
|
[38] |
Wang P L. Environmental geochemical characteristics of near-surface atmospheric dust in Chengdu. Chengdu: Chengdu University of Technology, 2004.
|
[39] |
Gholizadeh M H, Melesse A M, Reddi L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Science of The Total Environment, 2016, 566–567: 1552-1567.
|
[1] |
Ren S C. Spatial variability and source analysis of heavy metal pollution in vegetable fields in urban-rural ecotone. Hangzhou: Zhejiang University, 2013.
|
[2] |
Park E J, Kim D S, Park K. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 2008, 137: 441-449.
|
[3] |
Gordon G E.Receptor models. Environmental Science and Technology, 1980, 14(7): 792-799.
|
[4] |
Henry R C, Lewis C W, Hopke P K. Review of receptor model fundamentals. Atmospheric Environment, 1984, 18(8): 1507-1515.
|
[5] |
Bullock K R, Duvall R M, Norris G A,et al. Evaluation of the CMB and PMF methods using organic molecular markers in fine particulate matter collected during the Pittsburgh Air Quality Study. Atmospheric Environment, 2008, 42(29): 6897-6904.
|
[6] |
Borovec Z. Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 1996, 177(1): 237–250.
|
[7] |
Huang F, Wang X Q, Lou L P,et al. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 2010, 44(5): 1562–1572.
|
[8] |
Chueinta W, Hopke P K, Paatero P. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 2000, 34(20): 3319-3329.
|
[9] |
Brown S G,Ebrly S, Paatero P, et al. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 2015, 518: 626-635.
|
[10] |
Lu X, Hu W Y, Huang B, et al. Analysis of heavy metal sources in farmland soils around mining area based on Unmix method. Environmental Science, 2018, 39(3): 1421-1429.
|
[11] |
Tian F L, Chen J W, Liu C Y, et al. Application of Monte Carlo Uncertainty Analysis in the Source Analysis of Receptor models. Chinese Science Bulletin, 2011, 56(32): 2675-2680.
|
[12] |
Khairy M A, Lohmann R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 2013, 91(7): 895-903.
|
[13] |
Yang B, Zhou L,Xue N, et al. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 2013, 443: 31-39.
|
[14] |
Chen W, Wu X, Zhang H, et al. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 2017, 230: 927-935.
|
[15] |
Dong B, Zhang R Z, Gan Y D, et al. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 2019, 651(2): 3127–3138.
|
[16] |
Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: A comparison of three methods. Environmental Pollution, 2016, 211:28-37.
|
[17] |
Thurston G D, Spengler J D. A qualitative assessment of source contribution to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 1985, 18: 1347-1355.
|
[18] |
Paatero P, Tapper U. Positive matrix factorization: A non-negative factor method with optimal utilization of error estimates of data values. Environmetrics, 1994, 5(2): 111-126.
|
[19] |
Tan J, Duan J, Ma Y, et al. Long-term trends of chemical characteristics and sources of fine particle in Foshan city, Pearl River Delta: 2008-2014. Science of the Total Environment, 2016, 565:519-528.
|
[20] |
Vaccaro S, Sobiecka E, Contini S, et al. The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere, 2007, 69: 1055-1063.
|
[21] |
Henry R C. Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and Intelligent Laboratory Systems, 2003, 65: 179-189.
|
[22] |
Lang Y H, Yang X, Wang H, et al. Diagnostic ratios and positive matrix factorization to identify potential sources of PAHs in sediments of the Rizhao offshore, China. Polycyclic Aromatic Compounds, 2013, 33: 161-172.
|
[23] |
China National Environmental Monitoring Center (CNEMC). The Background Centrations of Soil Elements of China. Beijing: China Environmental Science Press, 1990.
|
[24] |
Chen J J, Zhang H H, Liu J M, et al. Spatial distribution characteristics and influencing factors of heavy metal elements in soil surface under regional geological background in Guangdong Province. Journal of Ecology and Environment, 2011, 20(4): 646-651.
|
[25] |
Tong Z Q, Gu L, Duan H J, et al. Spatial distribution of heavy metal concentrations in roadside soil based on Kriging interpolation: A case study of Zhengzhou-Kaifeng section of National Highway 310. Journal of Environmental Sciences, 2012, 32(12): 3030-3038.
|
[26] |
Lin C J, Pehkonen S O. The chemistry of atmospheric mercury: A review. Atmospheric Environmental, 1999, 33: 2067-2079.
|
[27] |
Kemp K. Trends and sources for heavy metals in urban atmosphere. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 189: 227-232.
|
[28] |
Faiz Y, Tufail M, Javed M T, et al. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway, Pakistan. Microchemical Journal, 2009, 92(2): 186-192.
|
[29] |
Cao Y Z, Liu X J, Xie Y F, et al. Analysis of composition and concentrations characteristics of polycyclic aromatic hydrocarbons in topsoil of main areas in China. Journal of Environmental Sciences, 2012, 32(1): 197-203.
|
[30] |
Tian H Z, Wang Y, Xue Z G, et al. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China,2007. Science of the Total Environment, 2011, 409:3078-3081.
|
[31] |
Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS method and geostatistics. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022.
|
[32] |
Yuan Z W, Luo T, Liu X W, et al. Tracing anthropogenic cadmium emissions: From source to pollution. Science of the Total Environment, 2019, 676: 87-96.
|
[33] |
Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107.
|
[34] |
Hu W Y, Wang H F, Dong L R, et al. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 2018, 237: 650 - 661.
|
[35] |
Bhattacharya P, Chesselet R, Stollenwerk K G, et al. Arsenic in the environment: Biology and chemistry. Science of the Total Environment, 2007, 379: 109-120.
|
[36] |
Zheng Y M, Luo J F, Chen T B, et al. Characteristics of cadmium concentrations in soils of different land use types in Beijing. Geographical Research, 2005, 24(4): 542-548.
|
[37] |
Markus J, Mcbratney A. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environment International, 2001, 27(5): 399-411.
|
[38] |
Wang P L. Environmental geochemical characteristics of near-surface atmospheric dust in Chengdu. Chengdu: Chengdu University of Technology, 2004.
|
[39] |
Gholizadeh M H, Melesse A M, Reddi L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Science of The Total Environment, 2016, 566–567: 1552-1567.
|