[1] |
Chen P Z, Zhang N, Wang S B, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. PANS, 2019, 116(14): 6635-6640.
|
[2] |
Chen G F, Yuan Y F, Jiang H F, Ren, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy, 2020, 5: 605-613.
|
[3] |
Zhang N, Jalil A, Wu D X, et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc., 2018, 140(30): 9434-9443.
|
[4] |
Suryanto B H, Du H L, Wang, D B, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal., 2019, 2: 290-296.
|
[5] |
van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev., 2014, 43: 5183-5191.
|
[6] |
Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations. Science, 2018, 360(6391): eaar6611.
|
[7] |
Kitano M, Inoue Y, Yamazaki Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem., 2012, 4: 934-940.
|
[8] |
Geng Z G, Liu Y, Kong X D, et al. Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater., 2018, 30(40): 1803498.
|
[9] |
Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal., 2019, 2: 377-380.
|
[10] |
Lee H K, Koh C S, Lee Y H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv., 2018, 4(3): eaar3208.
|
[11] |
Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204-214.
|
[12] |
Liu S S, Qian T, Wang M F, et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal., 2021, 4: 322-331.
|
[13] |
Luo Y R, Chen G F, Ding L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279-289.
|
[14] |
Liu Y, Li Q Y, Guo X, et al. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater., 2020, 32(24): 1907690.
|
[15] |
Tong Y Y, Guo H P, Liu D L, et al. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem. Int. Ed., 2020, 59(19): 7356-7361.
|
[16] |
Liu Y Y, Han M M, Xiong Q Z, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst. Adv. Energy Mater., 2019, 9(14): 1803935.
|
[17] |
Zhao Y F, Zhou H, Zhu X R, et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal., 2021, 4: 134-143.
|
[18] |
Borah K D, Bhuyan J. Magnesium porphyrins with relevance to chlorophylls. Dalton Trans., 2017, 46: 6497–6509.
|
[19] |
Deshpande C N, Ruwe T A, Shawki A, et al. Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nat. Commun., 2018, 9: 3075.
|
[20] |
Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotech., 2016, 11: 218-230.
|
[21] |
Fei H L, Dong J C, Wan C Z, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater., 2018, 30(35): 1802146.
|
[22] |
Zhang L Z, Jia Y, Gao G P, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem, 2018, 4(2): 285-297.
|
[23] |
Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
|
[24] |
Hu B, Hu M W, Seefeldt L, et al. Electrochemical dinitrogen reduction to ammonia by Mo2N: Catalysis or decomposition? ACS Energy Lett., 2019, 4: 1053-1054.
|
[25] |
Tang C, Qiao S Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev., 2019, 48: 3166-3180.
|
[26] |
Andersen S Z, oli V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570: 504-508.
|
[27] |
Kresse G, Hafner J. Ab-initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B, 1993, 48: 13115-13118.
|
[28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77: 3865-3868.
|
[29] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59: 1758-1775.
|
[30] |
Maintz S, Deringer V L, Tchougréeff A L, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chemi., 2016, 37: 1030-1035.
|
[31] |
Dronskowski R, Bloechl P E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem., 1993, 97: 8617-8624.
|
[32] |
Riyaz M, Goel N. Single-atom catalysis using chromium embedded in divacant graphene for conversion of dinitrogen to ammonia. ChemPhysChem, 2019, 20(15): 1954-1959.
|
[33] |
Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc., 2017, 139(48): 17281-17284.
|
[34] |
Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265-278.
|
[35] |
Ling C Y, Niu X H, Li Q, et al. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc., 2018, 140(43): 14161-14168.
|
[36] |
Zheng X N, Yao Y, Wang Y, et al. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study. Nanoscale, 2020, 12: 9696-9707.
|
[37] |
Robbins D L, Brock L R, Pilgrim J S, et al. Electronic spectroscopy of the Mg+–N2 complex: evidence for photoinduced activation of N2. J. Chem. Phys., 1995, 102: 1481-1492.
|
[38] |
Legare M A, Belanger-Chabot G, Dewhurst R D, et al. Nitrogen fixation and reduction at boron. Science, 2018, 359(6378): 896-899.
|
[39] |
Li X F, Li Q K, Cheng J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc., 2016, 138(28): 8706-8709.
|
[40] |
Yin H, Li S L, Gan L Y, et al. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A, 2019, 7: 11908-11914.
|
[41] |
Liu S S, Wang M F, Qian T, et al. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun., 2019, 10: 3898.
|
[42] |
Montoya J H, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180-2186.
|
[1] |
Chen P Z, Zhang N, Wang S B, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. PANS, 2019, 116(14): 6635-6640.
|
[2] |
Chen G F, Yuan Y F, Jiang H F, Ren, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy, 2020, 5: 605-613.
|
[3] |
Zhang N, Jalil A, Wu D X, et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc., 2018, 140(30): 9434-9443.
|
[4] |
Suryanto B H, Du H L, Wang, D B, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal., 2019, 2: 290-296.
|
[5] |
van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev., 2014, 43: 5183-5191.
|
[6] |
Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations. Science, 2018, 360(6391): eaar6611.
|
[7] |
Kitano M, Inoue Y, Yamazaki Y, et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem., 2012, 4: 934-940.
|
[8] |
Geng Z G, Liu Y, Kong X D, et al. Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater., 2018, 30(40): 1803498.
|
[9] |
Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal., 2019, 2: 377-380.
|
[10] |
Lee H K, Koh C S, Lee Y H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv., 2018, 4(3): eaar3208.
|
[11] |
Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204-214.
|
[12] |
Liu S S, Qian T, Wang M F, et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal., 2021, 4: 322-331.
|
[13] |
Luo Y R, Chen G F, Ding L, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279-289.
|
[14] |
Liu Y, Li Q Y, Guo X, et al. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Adv. Mater., 2020, 32(24): 1907690.
|
[15] |
Tong Y Y, Guo H P, Liu D L, et al. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem. Int. Ed., 2020, 59(19): 7356-7361.
|
[16] |
Liu Y Y, Han M M, Xiong Q Z, et al. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst. Adv. Energy Mater., 2019, 9(14): 1803935.
|
[17] |
Zhao Y F, Zhou H, Zhu X R, et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal., 2021, 4: 134-143.
|
[18] |
Borah K D, Bhuyan J. Magnesium porphyrins with relevance to chlorophylls. Dalton Trans., 2017, 46: 6497–6509.
|
[19] |
Deshpande C N, Ruwe T A, Shawki A, et al. Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nat. Commun., 2018, 9: 3075.
|
[20] |
Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotech., 2016, 11: 218-230.
|
[21] |
Fei H L, Dong J C, Wan C Z, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater., 2018, 30(35): 1802146.
|
[22] |
Zhang L Z, Jia Y, Gao G P, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem, 2018, 4(2): 285-297.
|
[23] |
Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
|
[24] |
Hu B, Hu M W, Seefeldt L, et al. Electrochemical dinitrogen reduction to ammonia by Mo2N: Catalysis or decomposition? ACS Energy Lett., 2019, 4: 1053-1054.
|
[25] |
Tang C, Qiao S Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev., 2019, 48: 3166-3180.
|
[26] |
Andersen S Z, oli V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570: 504-508.
|
[27] |
Kresse G, Hafner J. Ab-initio molecular-dynamics for open-shell transition-metals. Phys. Rev. B, 1993, 48: 13115-13118.
|
[28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77: 3865-3868.
|
[29] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59: 1758-1775.
|
[30] |
Maintz S, Deringer V L, Tchougréeff A L, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chemi., 2016, 37: 1030-1035.
|
[31] |
Dronskowski R, Bloechl P E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem., 1993, 97: 8617-8624.
|
[32] |
Riyaz M, Goel N. Single-atom catalysis using chromium embedded in divacant graphene for conversion of dinitrogen to ammonia. ChemPhysChem, 2019, 20(15): 1954-1959.
|
[33] |
Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc., 2017, 139(48): 17281-17284.
|
[34] |
Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265-278.
|
[35] |
Ling C Y, Niu X H, Li Q, et al. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc., 2018, 140(43): 14161-14168.
|
[36] |
Zheng X N, Yao Y, Wang Y, et al. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study. Nanoscale, 2020, 12: 9696-9707.
|
[37] |
Robbins D L, Brock L R, Pilgrim J S, et al. Electronic spectroscopy of the Mg+–N2 complex: evidence for photoinduced activation of N2. J. Chem. Phys., 1995, 102: 1481-1492.
|
[38] |
Legare M A, Belanger-Chabot G, Dewhurst R D, et al. Nitrogen fixation and reduction at boron. Science, 2018, 359(6378): 896-899.
|
[39] |
Li X F, Li Q K, Cheng J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc., 2016, 138(28): 8706-8709.
|
[40] |
Yin H, Li S L, Gan L Y, et al. Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A, 2019, 7: 11908-11914.
|
[41] |
Liu S S, Wang M F, Qian T, et al. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun., 2019, 10: 3898.
|
[42] |
Montoya J H, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180-2186.
|