[1] |
Russell C T, Holzer R E, Smith E J. OGO 3 observations of ELF noise in the magnetosphere. 2. The nature of the equatorial noise. J. Geophys. Res., 1970, 75: 755-768.
|
[2] |
Horne R B, Thorne R M, Glauert S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett., 2007, 34: L17107.
|
[3] |
Shprits Y Y. Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant. Geophys. Res. Lett., 2009, 36: L12106.
|
[4] |
Bortnik J, Thorne R M. Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res., 2010, 115: A07213.
|
[5] |
Fu S, Ni B, Li J, et al. Interactions between magnetosonic waves and ring current protons: Gyroaveraged test particle simulations. Journal of Geophysical Research (Space Physics), 2016, 121: 8537-8553.
|
[6] |
Li J, Bortnik J, Thorne R M, et al. Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves. Journal of Geophysical Research (Space Physics), 2016, 121: 3212- 3222.
|
[7] |
Li J, Ni B, Ma Q, et al. Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophys. Res. Lett., 2016, 43: 3009-3016.
|
[8] |
Yang C, Su Z, Xiao F, et al. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region. Geophys. Res. Lett., 2017, 44: 3980-3990.
|
[9] |
Ni B, Zou Z, Fu S, et al. Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves. Geophys. Res. Lett., 2018, 45: 1228-1236.
|
[10] |
Gulelmi A V, Klaine B I, Potapov A S. Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause. Planet. Space Sci., 1975, 23: 279-286.
|
[11] |
Curtis S A, Wu C S. Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere. J. Geophys. Res., 1979, 84: 2597-2607.
|
[12] |
Boardsen S A, Gallagher D L, Gurnett D A, et al. Funnel-shaped, low-frequency equatorial waves. J. Geophys. Res., 1992, 97: 14967-14976.
|
[13] |
Chen L, Thorne R M, Jordanova V K, et al. Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res., 2010, 115: A11222.
|
[14] |
Bortnik J, Thorne R M, Ni B, et al. Analytical approximation of transit time scattering due to magnetosonic waves. Geophys. Res. Lett., 2015, 42: 1318-1325.
|
[15] |
Ma Q, Li W, Thorne R M, et al. Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research (Space Physics), 2016, 121: 274-285.
|
[16] |
Wu Z, Su Z, Liu N, et al. Off-equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere. Geophysical Research Letters, 2021, 48: e2020GL091830.
|
[17] |
Su Z, Zhu H, Xiao F, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions. Phys. Plasmas, 2014, 21: 052310.
|
[18] |
Su Z, Zhu H, Xiao F, et al. Bounce-averaged advection and diffusion coeffificients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models. J. Geophys. Res., 2012, 117: A09222.
|
[19] |
Zhu H, Su Z, Xiao F, et al. Nonlinear interaction between ring current protons and electromagnetic ion cyclotron waves. J. Geophys. Res., 2012, 117: A12217.
|
[20] |
Su Z, Zhu H, Xiao F, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons. J. Geophys. Res., 2013, 118: 3188-3202.
|
[21] |
Wang B, Su Z, Zhang Y, et al. Nonlinear Landau resonant scattering of near-equatorially mirroring radiation belt electrons by oblique EMIC waves. Geophys. Res. Lett., 2016, 43(8): 3628-3636.
|
[22] |
Wang G, Su Z, Zheng H, et al. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves. Journal of Geophysical Research (Space Physics), 2017, 122: 1928-1945.
|
[23] |
Inan U S, Bell T F, Helliwell R A. Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J. Geophys. Res., 1978,83: 3235-3253.
|
[24] |
Bell T F. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field. J. Geophys. Res., 1984, 89: 905-918.
|
[25] |
Bortnik J, Thorne R M, Inan U S. Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett., 2008,35: L21102.
|
[26] |
Tao X, Bortnik J. Nonlinear interactions between relativistic radiation belt electrons and oblique whistler mode waves. Nonlinear Processes in Geophysics, 2010, 17: 599-604.
|
[27] |
Stix T H.Waves in Plasmas. New York: American Institute of Physics, 1992.
|
[28] |
Denton R E, Goldstein J, Menietti J D. Field line dependence of magnetospheric electron density. Geophys. Res. Lett., 2002,29: 2205.
|
[1] |
Russell C T, Holzer R E, Smith E J. OGO 3 observations of ELF noise in the magnetosphere. 2. The nature of the equatorial noise. J. Geophys. Res., 1970, 75: 755-768.
|
[2] |
Horne R B, Thorne R M, Glauert S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett., 2007, 34: L17107.
|
[3] |
Shprits Y Y. Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant. Geophys. Res. Lett., 2009, 36: L12106.
|
[4] |
Bortnik J, Thorne R M. Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res., 2010, 115: A07213.
|
[5] |
Fu S, Ni B, Li J, et al. Interactions between magnetosonic waves and ring current protons: Gyroaveraged test particle simulations. Journal of Geophysical Research (Space Physics), 2016, 121: 8537-8553.
|
[6] |
Li J, Bortnik J, Thorne R M, et al. Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves. Journal of Geophysical Research (Space Physics), 2016, 121: 3212- 3222.
|
[7] |
Li J, Ni B, Ma Q, et al. Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophys. Res. Lett., 2016, 43: 3009-3016.
|
[8] |
Yang C, Su Z, Xiao F, et al. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region. Geophys. Res. Lett., 2017, 44: 3980-3990.
|
[9] |
Ni B, Zou Z, Fu S, et al. Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves. Geophys. Res. Lett., 2018, 45: 1228-1236.
|
[10] |
Gulelmi A V, Klaine B I, Potapov A S. Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause. Planet. Space Sci., 1975, 23: 279-286.
|
[11] |
Curtis S A, Wu C S. Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere. J. Geophys. Res., 1979, 84: 2597-2607.
|
[12] |
Boardsen S A, Gallagher D L, Gurnett D A, et al. Funnel-shaped, low-frequency equatorial waves. J. Geophys. Res., 1992, 97: 14967-14976.
|
[13] |
Chen L, Thorne R M, Jordanova V K, et al. Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res., 2010, 115: A11222.
|
[14] |
Bortnik J, Thorne R M, Ni B, et al. Analytical approximation of transit time scattering due to magnetosonic waves. Geophys. Res. Lett., 2015, 42: 1318-1325.
|
[15] |
Ma Q, Li W, Thorne R M, et al. Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research (Space Physics), 2016, 121: 274-285.
|
[16] |
Wu Z, Su Z, Liu N, et al. Off-equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere. Geophysical Research Letters, 2021, 48: e2020GL091830.
|
[17] |
Su Z, Zhu H, Xiao F, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions. Phys. Plasmas, 2014, 21: 052310.
|
[18] |
Su Z, Zhu H, Xiao F, et al. Bounce-averaged advection and diffusion coeffificients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models. J. Geophys. Res., 2012, 117: A09222.
|
[19] |
Zhu H, Su Z, Xiao F, et al. Nonlinear interaction between ring current protons and electromagnetic ion cyclotron waves. J. Geophys. Res., 2012, 117: A12217.
|
[20] |
Su Z, Zhu H, Xiao F, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons. J. Geophys. Res., 2013, 118: 3188-3202.
|
[21] |
Wang B, Su Z, Zhang Y, et al. Nonlinear Landau resonant scattering of near-equatorially mirroring radiation belt electrons by oblique EMIC waves. Geophys. Res. Lett., 2016, 43(8): 3628-3636.
|
[22] |
Wang G, Su Z, Zheng H, et al. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves. Journal of Geophysical Research (Space Physics), 2017, 122: 1928-1945.
|
[23] |
Inan U S, Bell T F, Helliwell R A. Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J. Geophys. Res., 1978,83: 3235-3253.
|
[24] |
Bell T F. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field. J. Geophys. Res., 1984, 89: 905-918.
|
[25] |
Bortnik J, Thorne R M, Inan U S. Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett., 2008,35: L21102.
|
[26] |
Tao X, Bortnik J. Nonlinear interactions between relativistic radiation belt electrons and oblique whistler mode waves. Nonlinear Processes in Geophysics, 2010, 17: 599-604.
|
[27] |
Stix T H.Waves in Plasmas. New York: American Institute of Physics, 1992.
|
[28] |
Denton R E, Goldstein J, Menietti J D. Field line dependence of magnetospheric electron density. Geophys. Res. Lett., 2002,29: 2205.
|